[FLOW-3D 이론] 1. 개요

  1. 개요

FLOW-3D는 범용 전산 유체 역학(CFD) 소프트웨어입니다. 유체의 운동 방정식을 계산하기 위해 특별히 개발된 수치 기법을 사용하여 다중 스케일, 다중 물리 흐름 문제에 대해 과도적 3차원 해결책을 얻습니다. 다양한 물리적 및 수치 옵션을 통해 사용자는 다양한 유체 흐름 및 열 전달 현상 분석을 위해 FLOW-3D를 적용할 수 있습니다.

유체 운동은 비선형, 과도, 2차 미분 방정식으로 설명됩니다. 이러한 방정식을 풀기 위해 유체 운동 방정식을 사용해야합니다. 이러한 방법을 개발하는 과학을 전산 유체 역학이라고 합니다. 이 방정식의 수치해는 대수적 표현으로 다양한 항을 근사화 합니다. 그런 다음 결과 방정식을 해결하여 원래 문제에 대한 대략적인 해결책을 제시합니다. 이 과정을 시뮬레이션이라고 합니다. FLOW-3D에서 사용할 수 있는 수치해석 알고리즘의 개요는 운동 방정식에 대한 섹션에 나옵니다.

일반적으로 수치 모델은 계산 Mesh 또는 그리드로 시작합니다. 이것은 여러 개의 서로 연결된 요소 또는 셀로 구성됩니다. 이러한 셀은 물리적 공간을 해당 볼륨과 관련된 여러 노드가 있는 작은 볼륨으로 세분화합니다. 노드는 압력, 온도 및 속도와 같은 미지수의 값을 저장하는데 사용됩니다. Mesh는 사실상 원래의 물리적 공간을 대체하는 숫자 공간입니다. 또한 별도의 위치에서 흐름 파라미터를 정의하고, 경계 조건을 설정하고, 유체 운동 방정식의 수치 근사치를 개발하는 방법을 제공합니다. FLOW-3D 접근 방식은 흐름 영역을 직사각형 셀의 격자로 세분하는 것입니다. 이 격자는 brick elements라고도 합니다.

계산 Mesh는 물리적 공간을 효과적으로 이산화 시킵니다. 각 유체 매개 변수는 불연속 지점에서 값 배열에 의해 Mesh로 표시됩니다. 실제 물리적 파라미터는 공간에서 연속적으로 변하기 때문에 노드 사이의 간격이 미세한 Mesh는 더 거친 Mesh보다 현실을 더욱 잘 표현해줍니다. 그런 다음 수치 근사치의 기본 속성에 도달합니다. 그리드 간격이 줄어들면 유효한 모든 유효한 수치 근사가 원래 방정식에 접근합니다. 근사치가 이 조건을 만족하지 않으면 올바르지 않은 것으로 간주해야 합니다.

동일한 물리적 공간에 대해 격자 간격을 줄이거나 Mesh를 조정하면 더 많은 요소와 노드가 생겨 수치 모델의 크기가 커집니다. 그러나 유체 흐름 및 열 전달의 실제 현실과는 별도로, 시뮬레이션 엔지니어들이 적절한 크기의 Mesh를 선택하도록 하는것과 밀접한 관계에 있는 설계 주기, 컴퓨터 하드웨어 및 마감일의 현실적인 문제도 있습니다. 이러한 제약 조건을 만족시키는 것과 사용자가 정확한 결과를 얻는 것 사이에서 타협점을 찾는 것은, CFD 모델 개발 못지않은 중요한 균형 잡힌 행위입니다.

직사각형 그리드는 규칙적이거나 구조적인 특성 때문에 생성 및 저장이 매우 쉽습니다. 균일하지 않은 그리드 간격은 복잡한 흐름 도메인을 매칭할 때 유연성을 더합니다. 연산 셀은 세 개의 지수를 사용하여 연속적으로 번호가 매겨집니다. 즉, x 방향은 i, y 방향은 j, z 방향은 k입니다. 이 방법으로 3차원 Mesh의 각 셀은 물리적 공간의 점의 좌표와 유사한 고유한 주소(i, j, k)로 식별할 수 있습니다.

구조화된 직사각형 그리드는 수치적 방법의 개발의 상대적 용이성, 원래의 물리적 문제와의 관계에 대한 후자의 투명성, 그리고 마지막으로 수치적 해결의 정확성과 안정성의 추가적인 이점을 가지고 있습니다. 유한 차분법과 유한 체적법에 기초한 가장 오래된 수치 알고리즘은 원래 이러한 Mesh에서 개발되었습니다. 이것은 FLOW-3D에서 수치적 접근방식의 핵심을 형성합니다. 유한차분법은 테일러 확장의 특성과 파생된 정의의 직접적인 적용에 기초합니다. 미분 방정식에 대한 수치적 해결책을 얻기 위해 적용된 방법 중 가장 오래된 방법이며, 첫 번째 적용은 1768년 오일러에 의해 개발된 것으로 간주됩니다. 유한체적법은 유체 운동을 위한 보존법의 일체형태에서 직접 파생되므로 자연적으로 보존 특성을 보유합니다.

FLOW-3D는 일반적인 유체 방정식의 다른 제한 사례에 해당하는 여러 모드에서 작동할 수 있습니다. 예를 들어, 하나의 모드는 압축 가능한 흐름을 위한 것이고 다른 하나는 압축할 수 없는 흐름 상황을 위한 것입니다. 후자의 경우 유체의 밀도와 에너지가 일정하다고 가정할 수 있으므로 계산할 필요가 없습니다. 또한 1유체 모드와 2유체 모드가 있습니다. 자유 표면은 단일 유체 비압축 모드에 포함될 수 있습니다. 이러한 작동 모드는 동작 방정식에 대한 다양한 선택에 해당합니다.

자유 표면은 FLOW-3D로 수행된 많은 시뮬레이션에서 존재합니다. 유량 매개변수와 재료 특성(밀도, 속도, 압력 등)이 불연속성을 경험하기 때문에 모든 계산 환경에서 자유 표면을 모델링하는 것은 어렵습니다. FLOW-3D에서는, 액체에 인접한 가스의 관성이 무시되고, 가스에 의해 점유되는 부피는 균일한 압력과 온도로만 표현되는 빈 공간, 질량의 공백으로 대체됩니다. 대부분의 경우 가스 모션의 세부 사항은 훨씬 무거운 액체의 움직임에 중요하지 않기 때문에 이 접근 방식은 계산 노력을 줄이는 이점이 있습니다. 자유 표면은 액체의 외부 경계 중 하나가 됩니다. 자유 표면의 경계 조건에 대한 적절한 정의는 자유 표면 역학을 정확하게 포착하기 위해 중요합니다.

VOF(Volume of Fluid) 방법은 이러한 목적으로 FLOW-3D에 사용됩니다. 유체 함수의 볼륨 정의, VOF 전송 방정식 해결 방법, 자유 표면의 경계 조건 설정 등 세 가지 주요 구성요소로 구성됩니다.

일부 물리 및 수치 모델은 Flow Science의 기술 노트: http://users.flow3d.com/technical-notes/ 에 자세히 설명되어 있으며, 여기에는 예제도 포함되어 있습니다.

[FLOW-3D 이론] Sediment Scour Model / 퇴적물 세굴모델

10.3.20 Sediment Scour Model 퇴적물 세굴모델

퇴적 세굴모델은 입자크기, 질량밀도 임계 전단응력, 안정각 및 연행과 이송 변수 들이 서로 다른 물성치를 가지는 다수의 비응집성 퇴적 종류들을 가정한다. 예를들면, 중간 크기 모래, 거친 모래 그리고 미세 자갈은 한 모사에서 세가지의 다른 종으로 분류될 수 있다. 이 모델은 3차원이나 천해 유동모델에서도 사용될 수 있다. 이 모델은 퇴적물의 운동을 퇴적물의 침식, 이류 그리고 퇴적을 예측함으로써 다음과 같이 추정한다.

  • 부유퇴적물 이송계산
  • 중력에의한 퇴적물의 침전 계산
  • 바닥의 전단 및 유동 섭동에의한 퇴적물 연행 계산
  • 퇴적 입자들이  하상하여 유사 바닥을 따라 구르고, 건너뛰고 그리고 미끄러지는 소류사 이동 계산

FLOW-3D 에서 이는 퇴적물이 존재할 수 있는 두 상태를 고려함으로써 이루어진다. 부유와 하상유사. 부유퇴적물은 일반적으로 농도가 낮고 유동과 함께 이류한다. 하상 유사는 사용자가 정의할 수 있는 임계 패킹율(디폴트값은 0.64)에서 존재한다. 단지 하상 유사 입자의 얇은 표면층(몇 개의 입자 직경 두께 정도에서)만 소류사 이동 형태로 이동할 수 있다.

퇴적물은 하상 유사 경계면에서 전단과 작은 와류에 의한 올려짐과 재부유에 의해 연행된다. 퇴적물의 각기 개별 입자에 대한 유동 역학을 계산하는 것은 불가능하므로 경험적모델이 사용되어야 한다. 여기서 사용되는 모델은 Mastbergen 와 Van den Berg [MVanDBerg03]에 의거한다. 또한 Soulsby-Whitehouse equation [Sou97] 방정식이 임계 Shields 변수를 예측하는데 이용될 수있거나 사용자 정의된 변수가 지정될 수 있다. 디폴트로 임계 Shields 변수는 0.05이다. 임계 Shields 변수를 계산하는 첫째 단계는 무차원변수 d*i 를 계산하는 것이다:

   (10.235)

여기서

  • ρi is the density of the sediment species i, ρi 는 퇴적종 i 의 밀도
  • ρf is the fluid density. ρf 는 유체밀도
  • di is the diameter. di 는 직경
  • µf is the dynamic viscosity of fluid. µf 는 유체의 동적점도
  • g‖ is the magnitude of the acceleration of gravity g. ‖g‖ 는 중력가속도 g 의 크기

이로부터 무차원 임계 Shields 변수는 Soulsby-Whitehouse equation [Sou97]를이용하여 계산된다:

   (10.236)

임계 Shields 변수는 안정각을 포함하기 위해 구배표면에 대해 수정될 수 있다. 이에 대한 개념은 구배 경계면에서 하상 유사는 덜 안정적이므로 구배를 따라 내려가는 유체에 의해 더 쉽게 연행된다는 것이다. 이의 수정은 더 θcr,i [Sou97] 를 변경시키며:

   (10.237)

여기서 β 는 하상의 경사 각도, ϕi 는 퇴적종 i의 사용자 정의된 안정각 (디폴트는 32)이며, ψ 는 유동과 하상의 위로 향한 경사각도이다. 하상 경사방향으로 직접 올라가는 유동에대해 ψ = 0.이다.

지역 Shields 변수는 지역 하상전단응력 τ 에 기초하여 계산되며:

   (10.238)

d50,packed,

여기서 τ 는 바닥 표면조도를 고려하여 각기 3차원 난류및 천해유동 난류에 대해서 벽의 법칙 및 바닥 전단응력의 2차원 법칙을 이용하여 계산된다. Nikuradse 의 바닥표면 조도 ks 는 하상 유사의 지역 중간 입자 직경 d50,packed 에 비례한다고 가정된다,

ks = croughd50,packed                                                                                                             (10.239)

여기서 crough 는 디폴트 값이0인 사용자 정의 계수이다.

The entrainment lift velocity of sediment is then computed as [MVanDBerg03]:

퇴적물의 들어올려지는 연행속도는 다음으로 계산된다[MVanDBerg03]:.

   (10.240)

여기서 αi 는 연행 변수이며 0.018[MVanDBerg03] 이 권장되고 ns 는 다져진 경계바닥 면에서 외부로 향하는 법선 벡터이다. ulift,i 는 실질적으로 하상경계면에서의 부유 퇴적물의 질량소스로 작용하며 부유물로 전환되는 하상 유사의 양을 계산하는데 이용된다. 그 후에 부유 퇴적물은 유동과 함께 이송된다.

퇴적은 부유입자가 부유상태로부터 무게에 의해 다져진 하상에 침전하거나 소류사 이동에서 정지하게 되는 과정이다. 입자의 연행 및 침전은 반대의 과정이며 종종 동시에 발생한다. Soulsby [Sou97] 에 의해 제안된 침전속도 방정식이 사용된다:

   (10.241)

여기서 νf 는 운동학적 점성이다. 침전운동은 중력방향이라고 가정된다.

   (10.242)

입자대 입자의 상호작용을 고려하기위해 Richardson-Zaki 상관관계가 침전속도에 적용되며,

u*settling,i = usettling,i(1 − cs)ζ   (10.243)

여기서 cs 는 부유퇴적물의 전체체적율이다. 지수 ζ 는 다음과 같다.

ζ = ζuserζ0   (10.244)

ζuser 는 Richardson-Zaki 계수의 승수이며(디폴트는 1.0) ζ0는 다음으로 정의되는 Richardson-Zaki 계수이다.

Re < 0.2 ζ0 = 4.35
0.2 < Re < 1.0 ζ0 = 4.35/Re0.03
1.0 < Re < 500 ζ0 = 4.45/Re0.1
500 < Re ζ0 = 2.39

여기서 Re 는 입자 Reynolds 수이며

   (10.245)

 

소류사 이송은 퇴적물의 다져진 바닥표면 위에서의 구름과 튀어오름에의한 부유물 이송의 형태이다. 사용자는 하상 폭당 퇴적물의 체적이송율을 위한 3가지 방정식중의 하나를 선택한다:

  • Meyer, Peter and Müller [MPM48]

Φi = βMPM,                                                               (10.246)

  • Nielsen [Nie92]

Φi = βNie,iθi0.5(θi θ′cr,i)cb,i                                                                                                   (10.247)

  • Van Rijn [vanRijn84]

             (10.248)

여기서 βMPM,i, βNie,i βVR,i 는 각기 일반적으로 8.0, 12.0 and 0.053에 상응하는 계수이다. cb,i 는 하상물질 내의 종 i 의 체적율이다. 원래식에는 존재하지 않으나 다수 종의 효과를 참작하기 위해 식 (10.246), (10.247) 와 (10.248) 에 더해진다. Φi 는 무차원 소류사 이송율이며 다음에 의해 체적 소류사 이송율 qb,i,에 관련되어 있다.

   (10.249)

식 (10.249)은 시간및 바닥 폭당 체적의 단위인 소류사 이송율을 계산한다. 또 다른 필요한 정보는 소류사 두께의 추정이다. 즉, 도약하는 퇴적물의 두께. 이 두께를 추정하는데 선택된 관계는 [vanRijn84]이다.

   (10.250)

 

각 계산셀내 퇴적물의 운동을 계산하기 위해 qb,i 값이 [vanRijn84]에의해 소류사 속도로 전환되며:

   (10.251)

여기서 fb 는 퇴적물의 임계 패킹율이다. 소류사 속도는 다져진 하상 경계면에 인접한 유체 유동의 속도와 같은 방향으로 가정된다.

각 종에 대해 부유퇴적물 농도는 각 고유의 이송방정식을 해석함으로써 계산되며,

   (10.252)

여기서 Cs,i 는 종 i 의 부유 퇴적 질량 농도이며, 이는 유체-퇴적물 혼합물의 체적당 퇴적물의 질량으로 정의된다; D 는 확산 계수; us,i 는 부유 퇴적물속도. 부유하고있는 각 퇴적종은 유체나 다른종의 속도들과는다른 고유한 속도로 움직인다. 이는 다른 질량밀도와 크기를 가지는 입자들은 다른 관성을가지고 다른 항력을 받기 때문이다.

Cs,i by

따라서 부유퇴적체적농도 cs,i 는 유체-퇴적물 혼합물의 체적당 부유퇴적종 i 의 질량으로 정의된다. 이는 다음에 따라 Cs,i 에 연결되어 있다,

   (10.253)

Cs,i에대한 방정식 식 (10.252) 을 해석하기 위해 us,i 가 우선 계산되어야 한다. 다음 두가지 1) 부유중인 입자는 서로 강한 간섭을 안하고 2)부유입자와 유체 퇴적 혼합물의 속도 차이는 주로 입자의 침전속도 usettling,i 차이라는 것이 가정된다. 그러므로 us,i Cs,i 를 이용하여 평가된다.

us,i = + usettling,ics,i                                                                                                           (10.254)

여기서 는 유체 퇴적 혼합물의 속도를 표시한다.

대류수치 불안정성을 피하기 위해 부유퇴적물 이송의 시간단계에 대한 제약이 있다. 퇴적입자는 한 시간단계에 한 계산셀 이상을 지나 이송될 수 없다. 퇴적물 이류에 열려진 면적 및 체적율의 효과가 또한 고려되어야 한다. 안정조건은

   (10.255)

where (us,i,vs,i,ws,i,) are the x, y and z components of us,i, respectively, and CON < 1.0 is a safety factor to account for “worst cases” of convective numerical instability.

여기서 (us,i,vs,i,ws,i,) 는 us,i, 의 각기 x, y그리고 z 성분이며 CON < 1.0 는 대류수치 불안정성의 “최악의경우”를 고려하기 위한  안전 인자이다.

이 모델에는 제약이 있다. 미세토사나 점토를 포함하는 간섭하는 토양에는 유효하지 않다. 이 모델에서 사용되는 퇴적이론의 제약된 타당성때문에 과도하게 큰 입자에 대해서는 사용에 주의를 기울여야 한다. 퇴적이론의 경험적 성격 및 난류모델에서와 같은 다른 근사 등으로인해 적용시 최상의 결과를 위해 변수의 보정이 이루어져야 한다.

천해에서의 들어올리는 속도, 임계 Shields 변수와 침전속도에 대한 경험식의 변경은 사용자가 수정 가능한 서브루틴 scour_lift.F, scour_critic.F 그리고 scour_uset.F.에서 이루어질  수 있다.

 

[FLOW-3D 이론] Combustible Object Model / 연소물체모델

Combustible Object Model / 연소물체모델

고체 추진연료의 연소는 로켓 엔진설계에 관심사이다. 이 절은 가스내 고체 추진연료의 연소를위한 모델을 기술한다.

추진연료의 연소는 주위 가스의 압력과 온도를 높인다. 결과적으로 고체 연료내에 응력과 변형이 발생한다. 추가로 연료가 사용되면 유동영역이 증가한다. 이런 변화를 예측하는 것에 관심이 있다. 이 모델은 다음 물성치를 갖는다.

  1. 연소율은 경험 지수를 가지는 멱 함수를 이용하여 가스 압력에 의해 조절된다.
  2. 연소 반응화학은 모델링되지 않는다.
  3. 사용된 고체연료는 등가질량을 가지는 가스로 변환되고 역학적으로 계산된 압력, 속도장 그리고 확산에 따라 이동된다;
  4. 연소가스의 밀도는 이상 기체 상태 방정식(EOS으로부터 계산된다;
  5. 연소율에대한 직접적인 난류효과는 무시된다;
  6. 연소 요소에서의 응력 및 변형 계산 또한 포함될 수 있다;

수치적 접근은 용해 고상용질 모델에서 사용된 것과 유사하다. 연소성고체는 특정 형태의 형상요소로 표현된다. 고체질량은 계산된 질량 전달율에따라 유체로 변환된다. 질량, 에너지그리고 모멘텀 소스는 고체연료의 경계면에 적용된다. 고체의 형태는 면적과 체적의 비율을 이용하여 조절된다.

가스/연료 경계에서의 연소 질량 유량 QM, 은 다음과같이정의된다.

QM = ρsolid(a · Pb)                                                                          (10.204)

여기서 ρsolid 는 고체연료밀도, P 는 경계면에서의 가스압력 그리고 a b 는 사용자가 정의하는 경험지수들이다. 식(10.204) 의 괄호안의 표현은 실질적인 경계면의 속도이다. 반응에 의해 생성된에너지 QE, 는 다음과 같다.

QE = QMCPTburn                                                                                                                  (10.205)

여기서 CP 는 가스의 정압비열이고 Tburn 는 사용자 정의된 연소온도이다.

질량소스는 정체 형태로 가정되며,즉 배기 가스의 초기속도는0이다. 이 가정으로 인해 모멘텀방정식에 추가 소스항이 존재하지 않는다.

면적/체적 비율 표현 기법(FAVORTM) 은 연소 고체 물체의 변하는 형상을 나타내는데 이용된다. 유동영역 내에 추진체및 유체에 용해될 때 이의 형상과 체적의 변화를 고려하기위해GMO의 변형모델이 개발되었다. 표준 GMO 모델은 유동 영역내에서 움직이는 강체의 운동을 기술하는 한편, 연소물체 모델은 그렇지 않으면 정지되어있는 연소요소인 추진체의 경계의 변화를 추적한다. 두 모델 다 고정 직교격자에서 변하는 형상을 표현하기 위해 시간에따라 변하는 면적과 체적 비율을 사용한다. 이 변수들은 요소의 경계위치의 변화를 반영하기 위해 매 시간단계에서 갱신된다. 압력과 속도 같은 유체 양들은 새로 열려진 셀내에서 초기화되어야 한다. 체적 소스와 싱크가 또한 유체와 고체에서의 연속성을 유지하기 위해 이동경계에서 계산된다.

증강된 모델에서 추진체를 나타내는 형상성분은 형태 연소의 한 성분으로 지정된다: 정지해 있지만 형상과  체적은 변한다. 이는 입력변수 IFOBBURN(nob)= 1로 지명되며 여기서 nob 은 성분 번호이다. 면적과 체적비율은 고체연료의 점진적 감소를 반영하기 위해 매 시간 단계에서 재 계산된다. 이러한 형상 성분을 보여주는 주요 변수는 셀내 고체의 상대적(비율) 체적이며 이는 셀 내의 고상 체적의 전체 셀 체적 대한 비율이다:

Vf,combust = Vcombust/Vcell                 0 ≤ Vf,combust ≤ 1.0                                             (10.206)

셀내의 공간 체적비율 또는 체적율은 다음과같다.

Vf = 1.0 − Vf,combust                                                                                                            (10.207)

이때 계산 셀 내의 고체 추진체의 변화는

   (10.208)

이며

여기서 dA 는 셀내 추진체 표면의 면적이다.

그림 10.8: 수치모델의 경계면 지역 개략도. 경계면 우측의 음영 면적은 시간에 따라 형태와 체적이변하는 고체 추진체를 나타내는 연소요소에 의해 점유되어 있다. 반응가스는 얇은 점선에 의해 표시된 경계면에 인접한 체적안의 유체내에 분산되어 있다. 굵은 점선은 셀내의 고체 추진체 체적을 나타낸다.

 

주어진 시간 단계 dt 에서 연소된 추진체의 양은 dM = QMdAdt이고 에너지는 경계면에 바로 인접한 포함하는 가스 체적에 분산되어 있다. 일단 질량과 에너지가 유한체적 내에 할당되어 있다면 확산과 대류과정이 뒤 따른다.

질량 이송 방정식은 반응에 의해 생성된 가스에 대해 해석된다.  해는 초기가스(공기로 추정되는)의 혼합물내 연소가스의 질량 비율로 출력되고 다른 공간 변수와 함께 후처리에서 보여질 수 있다.  초기 공간에 존재하는 가스의 물성치는 물론 항상 그렇지는 않지만 연소가스의 물성치와 같다고 가정된다. 그러나 이 가정에 의해 도입된 에러는 초기 가스가 공간에서 배출될 때 감소한다. 그러므로 압력유체 #2의 물성은 연소가스의 물성에 상응해야한다.

고체 추진체내의 탄성응력이 모델링되어야 하면 유체 구조 상호작용 모델(FluidStructure Interaction (FSI) and Thermal Stress Evolution (TSE) Models) 이 FSI (Model Setup) 형태로 지정된 연소 요소와 함께 전개되어야 한다. 고체 추진체의 형상과 체적이 시간에 따라 변할 때 탄성응력을 모사하기 위해 사용하는 유한요소 격자 또한 변해야한다: 고체연료가 연소되어 사라지는 지역에서 요소는 모사에서 제거되고 이에 기인하는 가스압력이 새로 노출된 고체표면에 작용한다.

이 모델을 이용하기 위해 연소 요소에대한 망이 유체 구조 상호작용 모델이나 열응력 전개(FSI/TSE) 모델을 일시적으로 구동하고 연소요소 표식(ifobburn(1)=0)을 잠금으로써 생성되어야 한다. 생성된 망 파일은 FSI/TSE 모델을 끝내고 연소요소표식(ifobburn(1)=0)을 다시 구동하여 저장되어야 한다. 생성된 망은 iffem(1)=1 와 ffem(1) = ‘fe_mesh_file.FEMESH’ 표식을 사용하여 모사중에 사용되어야한다. 이는 연소요소 설정을 마친다.