냉각 속도 및 온도 구배와 같은 FLOW-3D AM 데이터를 미세 구조 모델에 입력하여 결정 성장 및 수상 돌기 암 간격을 예측할 수 있습니다.
레이저 파우더 베드 융합으로 제작 된 니켈 기반 초합금의 열전달, 유체 흐름 및 응고 미세 구조 모델링
오하이오 주립 대학의 연구원들은 니켈 기반 초합금의 미세 구조 진화를 예측하기 위해 용융 풀과 고체 / 액체 인터페이스의 적절한 위치에서 열 구배 및 냉각 속도 데이터를 추출했습니다.
열 응력 | Thermal Stresses
FLOW-3D AM 시뮬레이션의 결과를 ABAQUS 또는 MSC NASTRAN과 같은 FEA 소프트웨어에 입력하여 추가 열 응력 분석을 실행할 수 있습니다. 여기에서 T- 조인트의 레이저 용접 시뮬레이션 결과를 추가 응력 분석을 위해 ABAQUS로 가져 오는 방법을 볼 수 있습니다. 마찬가지로 LPBF 시뮬레이션에서 응고 된 용융 풀 데이터의 결과를 사용하여 다른 FEA 소프트웨어에서 열 응력 및 왜곡 분석을 연구 할 수 있습니다.
Thermal Stresses Case Study
Directed Energy Deposition
DED (Directed Energy Deposition)는 레이저 또는 전자 빔과 같은 에너지 소스를 사용하여 가열 및 융합되는 와이어 또는 분말을 증착하여 부품을 만드는 적층 제조 공정입니다. FLOW-3D AM 은 분말 또는 와이어 이송 속도 및 크기 특성, 레이저 출력 및 스캔 속도와 같은 공정 매개 변수를 고려하여 DED 공정을 시뮬레이션 할 수 있습니다. 또한, 기판과 분말 재료의 서로 다른 합금에 대해 독립적 인 열 물리적 재료 특성을 정의하여 다중 재료 DED 프로세스를 시뮬레이션 할 수 있습니다.
레이저 물리학의 구현과 열 전달, 응고, 표면 장력, 차폐 가스 효과 및 반동 압력을 포함한 압력 효과를 통해 연구원은 결과 용접 비드의 강도 및 균일성에 대한 공정 매개 변수의 영향을 정확하게 분석 할 수 있습니다. 또한 이러한 시뮬레이션을 여러 레이어로 확장하여 후속 레이어 간의 융합을 분석 할 수 있습니다.
일부 연구자들은 부품을 만들기 위해 더 넓은 범위의 처리 조건을 사용하여 하이브리드 와이어 분말 기반 DED 시스템을 찾고 있습니다. 예를 들어, 이 시뮬레이션은 다양한 분말 및 와이어 이송 속도를 가진 하이브리드 시스템을 살펴봅니다.
와이어 기반 DED | Wire Based DED
와이어 기반 DED는 분말 기반 DED보다 처리량이 높고 낭비가 적지만 재료 구성 및 증착 방향 측면에서 유연성이 떨어집니다. FLOW-3D AM 은 와이어 기반 DED의 처리 결과를 이해하는데 유용하며 최적화 연구를 통해 빌드에 대한 와이어 이송 속도 및 직경과 같은 최상의 처리 매개 변수를 찾을 수 있습니다.
FLOW-3D AM은 레이저 파우더 베드 융합 (L-PBF), 바인더 제트 및 DED (Directed Energy Deposition)와 같은 적층 제조 공정 ( additive manufacturing )을 시뮬레이션하고 분석하는 CFD 소프트웨어입니다. FLOW-3D AM 의 다중 물리 기능은 공정 매개 변수의 분석 및 최적화를 위해 분말 확산 및 압축, 용융 풀 역학, L-PBF 및 DED에 대한 다공성 형성, 바인더 분사 공정을 위한 수지 침투 및 확산에 대해 매우 정확한 시뮬레이션을 제공합니다.
3D 프린팅이라고도하는 적층 제조(additive manufacturing)는 일반적으로 층별 접근 방식을 사용하여, 분말 또는 와이어로 부품을 제조하는 방법입니다. 금속 기반 적층 제조 공정에 대한 관심은 지난 몇 년 동안 시작되었습니다. 오늘날 사용되는 3 대 금속 적층 제조 공정은 PBF (Powder Bed Fusion), DED (Directed Energy Deposition) 및 바인더 제트 ( Binder jetting ) 공정입니다. FLOW-3D AM 은 이러한 각 프로세스에 대한 고유 한 시뮬레이션 통찰력을 제공합니다.
파우더 베드 융합 및 직접 에너지 증착 공정에서 레이저 또는 전자 빔을 열원으로 사용할 수 있습니다. 두 경우 모두 PBF용 분말 형태와 DED 공정용 분말 또는 와이어 형태의 금속을 완전히 녹여 융합하여 층별로 부품을 형성합니다. 그러나 바인더 젯팅(Binder jetting)에서는 결합제 역할을 하는 수지가 금속 분말에 선택적으로 증착되어 층별로 부품을 형성합니다. 이러한 부품은 더 나은 치밀화를 달성하기 위해 소결됩니다.
FLOW-3D AM 의 자유 표면 추적 알고리즘과 다중 물리 모델은 이러한 각 프로세스를 높은 정확도로 시뮬레이션 할 수 있습니다. 레이저 파우더 베드 융합 (L-PBF) 공정 모델링 단계는 여기에서 자세히 설명합니다. DED 및 바인더 분사 공정에 대한 몇 가지 개념 증명 시뮬레이션도 표시됩니다.
레이저 파우더 베드 퓨전 (L-PBF)
LPBF 공정에는 유체 흐름, 열 전달, 표면 장력, 상 변화 및 응고와 같은 복잡한 다중 물리학 현상이 포함되어 공정 및 궁극적으로 빌드 품질에 상당한 영향을 미칩니다. FLOW-3D AM 의 물리적 모델은 질량, 운동량 및 에너지 보존 방정식을 동시에 해결하는 동시에 입자 크기 분포 및 패킹 비율을 고려하여 중규모에서 용융 풀 현상을 시뮬레이션합니다.
FLOW-3D DEM 및 FLOW-3D WELD 는 전체 파우더 베드 융합 공정을 시뮬레이션하는 데 사용됩니다. L-PBF 공정의 다양한 단계는 분말 베드 놓기, 분말 용융 및 응고,이어서 이전에 응고 된 층에 신선한 분말을 놓는 것, 그리고 다시 한번 새 층을 이전 층에 녹이고 융합시키는 것입니다. FLOW-3D AM 은 이러한 각 단계를 시뮬레이션하는 데 사용할 수 있습니다.
파우더 베드 부설 공정
FLOW-3D DEM을 통해 분말 크기 분포, 재료 특성, 응집 효과는 물론 롤러 또는 블레이드 움직임 및 상호 작용과 같은 기하학적 효과와 관련된 분말 확산 및 압축을 이해할 수 있습니다. 이러한 시뮬레이션은 공정 매개 변수가 후속 인쇄 공정에서 용융 풀 역학에 직접적인 영향을 미치는 패킹 밀도와 같은 분말 베드 특성에 어떻게 영향을 미치는지에 대한 정확한 이해를 제공합니다.
다양한 파우더 베드 압축을 달성하는 한 가지 방법은 베드를 놓는 동안 다양한 입자 크기 분포를 선택하는 것입니다. 아래에서 볼 수 있듯이 세 가지 크기의 입자 크기 분포가 있으며, 이는 가장 높은 압축을 제공하는 Case 2와 함께 다양한 분말 베드 압축을 초래합니다.
입자-입자 상호 작용, 유체-입자 결합 및 입자 이동 물체 상호 작용은 FLOW-3D DEM을 사용하여 자세히 분석 할 수도 있습니다 . 또한 입자간 힘을 지정하여 분말 살포 응용 분야를 보다 정확하게 연구 할 수도 있습니다.
이 FLOW-3D AM 시뮬레이션은 이산 요소 방법 (DEM)을 사용하여 역 회전하는 원통형 롤러로 인한 분말 확산을 연구합니다. 비디오 시작 부분에서 빌드 플랫폼이 위로 이동하는 동안 분말 저장소가 아래로 이동합니다. 그 직후, 롤러는 분말 입자 (초기 위치에 따라 색상이 지정됨)를 다음 층이 녹고 구축 될 준비를 위해 구축 플랫폼으로 펼칩니다. 이러한 시뮬레이션은 저장소에서 빌드 플랫폼으로 전송되는 분말 입자의 선호 크기에 대한 추가 통찰력을 제공 할 수 있습니다.
Melting | 파우더 베드 용해
DEM 시뮬레이션에서 파우더 베드가 생성되면 STL 파일로 추출됩니다. 다음 단계는 CFD를 사용하여 레이저 용융 공정을 시뮬레이션하는 것입니다. 여기서는 레이저 빔과 파우더 베드의 상호 작용을 모델링 합니다. 이 프로세스를 정확하게 포착하기 위해 물리학에는 점성 흐름, 용융 풀 내의 레이저 반사 (광선 추적을 통해), 열 전달, 응고, 상 변화 및 기화, 반동 압력, 차폐 가스 압력 및 표면 장력이 포함됩니다. 이 모든 물리학은 이 복잡한 프로세스를 정확하게 시뮬레이션하기 위해 TruVOF 방법을 기반으로 개발되었습니다.
레이저 출력 200W, 스캔 속도 3.0m / s, 스폿 반경 100μm에서 파우더 베드의 용융 풀 분석.
용융 풀이 응고되면 FLOW-3D AM 압력 및 온도 데이터를 Abaqus 또는 MSC Nastran과 같은 FEA 도구로 가져와 응력 윤곽 및 변위 프로파일을 분석 할 수도 있습니다.
Multilayer | 다층 적층 제조
용융 풀 트랙이 응고되면 DEM을 사용하여 이전에 응고된 층에 새로운 분말 층의 확산을 시뮬레이션 할 수 있습니다. 유사하게, 레이저 용융은 새로운 분말 층에서 수행되어 후속 층 간의 융합 조건을 분석 할 수 있습니다.
해석 진행 절차는 첫 번째 용융층이 응고되면 입자의 두 번째 층이 응고 층에 증착됩니다. 새로운 분말 입자 층에 레이저 공정 매개 변수를 지정하여 용융 풀 시뮬레이션을 다시 수행합니다. 이 프로세스를 여러 번 반복하여 연속적으로 응고된 층 간의 융합, 빌드 내 온도 구배를 평가하는 동시에 다공성 또는 기타 결함의 형성을 모니터링 할 수 있습니다.
LPBF의 키홀 링 | Keyholing in LPBF
키홀링 중 다공성은 어떻게 형성됩니까? 이것은 TU Denmark의 연구원들이 FLOW-3D AM을 사용하여 답변한 질문이었습니다. 레이저 빔의 적용으로 기판이 녹으면 기화 및 상 변화로 인한 반동 압력이 용융 풀을 압박합니다. 반동 압력으로 인한 하향 흐름과 레이저 반사로 인한 추가 레이저 에너지 흡수가 공존하면 폭주 효과가 발생하여 용융 풀이 Keyholing으로 전환됩니다. 결국, 키홀 벽을 따라 온도가 변하기 때문에 표면 장력으로 인해 벽이 뭉쳐져서 진행되는 응고 전선에 의해 갇힐 수 있는 공극이 생겨 다공성이 발생합니다. FLOW-3D AM 레이저 파우더 베드 융합 공정 모듈은 키홀링 및 다공성 형성을 시뮬레이션 하는데 필요한 모든 물리 모델을 보유하고 있습니다.
바인더 분사 (Binder jetting)
Binder jetting 시뮬레이션은 모세관 힘의 영향을받는 파우더 베드에서 바인더의 확산 및 침투에 대한 통찰력을 제공합니다. 공정 매개 변수와 재료 특성은 증착 및 확산 공정에 직접적인 영향을 미칩니다.
Scan Strategy | 스캔 전략
스캔 전략은 온도 구배 및 냉각 속도에 영향을 미치기 때문에 미세 구조에 직접적인 영향을 미칩니다. 연구원들은 FLOW-3D AM 을 사용하여 결함 형성과 응고된 금속의 미세 구조에 영향을 줄 수 있는 트랙 사이에서 발생하는 재 용융을 이해하기 위한 최적의 스캔 전략을 탐색하고 있습니다. FLOW-3D AM 은 하나 또는 여러 레이저에 대해 시간에 따른 방향 속도를 구현할 때 완전한 유연성을 제공합니다.
Beam Shaping | 빔 형성
레이저 출력 및 스캔 전략 외에도 레이저 빔 모양과 열유속 분포는 LPBF 공정에서 용융 풀 역학에 큰 영향을 미칩니다. AM 기계 제조업체는 공정 안정성 및 처리량에 대해 다중 코어 및 임의 모양의 레이저 빔 사용을 모색하고 있습니다. FLOW-3D AM을 사용하면 멀티 코어 및 임의 모양의 빔 프로파일을 구현할 수 있으므로 생산량을 늘리고 부품 품질을 개선하기 위한 최상의 구성에 대한 통찰력을 제공 할 수 있습니다.
이 시뮬레이션에서 스테인리스 강 및 알루미늄 분말은 FLOW-3D AM 이 용융 풀 역학을 정확하게 포착하기 위해 추적하는 독립적으로 정의 된 온도 의존 재료 특성을 가지고 있습니다. 시뮬레이션은 용융 풀에서 재료 혼합을 이해하는 데 도움이됩니다.
다중 재료 용접 사례 연구
이종 금속의 레이저 키홀 용접에서 금속 혼합 조사
GM과 University of Utah의 연구원들은 FLOW-3D WELD 를 사용 하여 레이저 키홀 용접을 통한 이종 금속의 혼합을 이해했습니다. 그들은 반동 압력 및 Marangoni 대류와 관련하여 구리와 알루미늄의 혼합 농도에 대한 레이저 출력 및 스캔 속도의 영향을 조사했습니다. 그들은 시뮬레이션을 실험 결과와 비교했으며 샘플 내의 절단 단면에서 재료 농도 사이에 좋은 일치를 발견했습니다.
방향성 에너지 증착
FLOW-3D AM 의 내장 입자 모델 을 사용하여 직접 에너지 증착 프로세스를 시뮬레이션 할 수 있습니다. 분말 주입 속도와 고체 기질에 입사되는 열유속을 지정함으로써 고체 입자는 용융 풀에 질량, 운동량 및 에너지를 추가 할 수 있습니다. 다음 비디오에서 고체 금속 입자가 용융 풀에 주입되고 기판에서 용융 풀의 후속 응고가 관찰됩니다.
Surface roughness of laser powder bed fusion (L-PBF) printed overhang regions is a major contributor to deteriorated shape accuracy/surface quality. This study investigates the mechanisms behind the evolution of surface roughness (Ra) in overhang regions. The evolution of surface morphology is the result of a combination of border track contour, powder adhesion, warp deformation, and dross formation, which is strongly related to the overhang angle (θ). When 0° ≤ θ ≤ 15°, the overhang angle does not affect Ra significantly since only a small area of the melt pool boundaries contacts the powder bed resulting in slight powder adhesion. When 15° < θ ≤ 50°, powder adhesion is enhanced by the melt pool sinking and the increased contact area between the melt pool boundary and powder bed. When θ > 50°, large waviness of the overhang contour, adhesion of powder clusters, severe warp deformation and dross formation increase Ra sharply.
레이저 파우더 베드 퓨전 (L-PBF) 프린팅 오버행 영역의 표면 거칠기는 형상 정확도 / 표면 품질 저하의 주요 원인입니다. 이 연구 는 오버행 영역에서 표면 거칠기 (Ra ) 의 진화 뒤에 있는 메커니즘을 조사합니다 . 표면 형태의 진화는 오버행 각도 ( θ ) 와 밀접한 관련이있는 경계 트랙 윤곽, 분말 접착, 뒤틀림 변형 및 드로스 형성의 조합의 결과입니다 . 0° ≤ θ ≤ 15° 인 경우 , 용융풀 경계의 작은 영역 만 분말 베드와 접촉하여 약간의 분말 접착이 발생하기 때문에 오버행 각도가 R a에 큰 영향을 주지 않습니다 . 15° < θ 일 때 ≤ 50°, 용융 풀 싱킹 및 용융 풀 경계와 분말 베드 사이의 증가된 접촉 면적으로 분말 접착력이 향상됩니다. θ > 50° 일 때 오버행 윤곽의 큰 파형, 분말 클러스터의 접착, 심한 휨 변형 및 드 로스 형성이 Ra 급격히 증가 합니다.
KEYWORDS: Laser powder bed fusion (L-PBF), melt pool dynamics, overhang region, shape deviation, surface roughness
1. Introduction
레이저 분말 베드 융합 (L-PBF)은 첨단 적층 제조 (AM) 기술로, 집중된 레이저 빔을 사용하여 금속 분말을 선택적으로 융합하여 슬라이스 된 3D 컴퓨터 지원에 따라 층별로 3 차원 (3D) 금속 부품을 구축합니다. 설계 (CAD) 모델 (Chatham, Long 및 Williams 2019 ; Tan, Zhu 및 Zhou 2020 ). 재료가 인쇄 층 아래에 존재하는지 여부에 따라 인쇄 영역은 각각 솔리드 영역 또는 돌출 영역으로 분류 될 수 있습니다. 따라서 오버행 영역은 고체 기판이 아니라 분말 베드 바로 위에 건설되는 특수 구조입니다 (Patterson, Messimer 및 Farrington 2017). 오버행 영역은지지 구조를 포함하거나 포함하지 않고 구축 할 수 있으며, 지지대가있는 돌출 영역의 L-PBF는 지지체가 더 낮은 밀도로 구축된다는 점을 제외 하고 (Wang and Chou 2018 ) 고체 기판의 공정과 유사합니다 (따라서 기계적 강도가 낮기 때문에 L-PBF 공정 후 기계적으로 쉽게 제거 할 수 있습니다. 따라서지지 구조로 인쇄 된 오버행 영역은 L-PBF 공정 후 지지물 제거, 연삭 및 연마와 같은 추가 후 처리 단계가 필요합니다.
수평 내부 채널의 제작과 같은 일부 특정 경우에는 공정 후 지지대를 제거하기가 어려우므로 채널 상단 절반의 돌출부 영역을 지지대없이 건설해야합니다 (Hopkinson and Dickens 2000 ). 수평 내부 채널에 사용할 수없는지지 구조 외에도 내부 표면, 특히 등각 냉각 채널 (Feng, Kamat 및 Pei 2021 ) 에서 발생하는 복잡한 3D 채널 네트워크의 경우 표면 마감 프로세스를 구현하는 것도 어렵습니다 . 결과적으로 오버행 영역은 (i) 잔류 응력에 의한 변형, (ii) 계단 효과 (Kuo et al. 2020 ; Li et al. 2020 )로 인해 설계된 모양에서 벗어날 수 있습니다 .) 및 (iii) 원하지 않는 분말 소결로 인한 향상된 표면 거칠기; 여기서, 앞의 두 요소는 일반적으로 mm 길이 스케일에서 ‘매크로’편차로 분류되고 후자는 일반적으로 µm 길이 스케일에서 ‘마이크로’편차로 인식됩니다.
열 응력에 의한 변형은 오버행 영역에서 발생하는 중요한 문제입니다 (Patterson, Messimer 및 Farrington 2017 ). 국부적 인 용융 / 냉각은 용융 풀 내부 및 주변에서 큰 온도 구배를 유도하여 응고 된 층에 집중적 인 열 응력을 유발합니다. 열 응력에 의한 뒤틀림은 고체 영역을 현저하게 변형하지 않습니다. 이러한 영역은 아래의 여러 레이어에 의해 제한되기 때문입니다. 반면에 오버행 영역은 구속되지 않고 공정 중 응력 완화로 인해 상당한 변형이 발생합니다 (Kamat 및 Pei 2019 ). 더욱이 용융 깊이는 레이어 두께보다 큽니다 (이전 레이어도 재용 해되어 빌드 된 레이어간에 충분한 결합을 보장하기 때문입니다 [Yadroitsev et al. 2013 ; Kamath et al.2014 ]),응고 된 두께가 설계된 두께보다 크기 때문에형태 편차 (예 : 드 로스 [Charles et al. 2020 ; Feng et al. 2020 ])가 발생합니다. 마이크로 스케일에서 인쇄 된 표면 (R a 및 S a ∼ 10 μm)은 기계적으로 가공 된 표면보다 거칠다 (Duval-Chaneac et al. 2018 ; Wen et al. 2018 ). 이 문제는고형화 된 용융 풀의 가장자리에 부착 된 용융되지 않은 분말의 결과로 표면 거칠기 (R a )가 일반적으로 약 20 μm인 오버행 영역에서 특히 심각합니다 (Mazur et al. 2016 ; Pakkanen et al. 2016 ).
오버행 각도 ( θ , 빌드 방향과 관련하여 측정)는 오버행 영역의 뒤틀림 편향과 표면 거칠기에 영향을 미치는 중요한 매개 변수입니다 (Kamat and Pei 2019 ; Mingear et al. 2019 ). θ ∼ 45 ° 의 오버행 각도 는 일반적으로지지 구조없이 오버행 영역을 인쇄 할 수있는 임계 값으로 합의됩니다 (Pakkanen et al. 2016 ; Kadirgama et al. 2018 ). θ 일 때이 임계 값보다 크면 오버행 영역을 허용 가능한 표면 품질로 인쇄 할 수 없습니다. 오버행 각도 외에도 레이저 매개 변수 (레이저 에너지 밀도와 관련된)는 용융 풀의 모양 / 크기 및 용융 풀 역학에 영향을줌으로써 오버행 영역의 표면 거칠기에 영향을줍니다 (Wang et al. 2013 ; Mingear et al . 2019 ).
용융 풀 역학은 고체 (Shrestha 및 Chou 2018 ) 및 오버행 (Le et al. 2020 ) 영역 모두에서 수행되는 L-PBF 공정을 포함한 레이저 재료 가공의 일반적인 물리적 현상입니다 . 용융 풀 모양, 크기 및 냉각 속도는 잔류 응력으로 인한 변형과 표면 거칠기에 모두 영향을 미치므로 처리 매개 변수와 표면 형태 / 품질 사이의 다리 역할을하며 용융 풀을 이해하기 위해 수치 시뮬레이션을 사용하여 추가 조사를 수행 할 수 있습니다. 거동과 표면 거칠기에 미치는 영향. 현재까지 고체 영역의 L-PBF 동안 용융 풀 동작을 시뮬레이션하기 위해 여러 연구가 수행되었습니다. 유한 요소 방법 (FEM)과 같은 시뮬레이션 기술 (Roberts et al. 2009 ; Du et al.2019 ), 유한 차분 법 (FDM) (Wu et al. 2018 ), 전산 유체 역학 (CFD) (Lee and Zhang 2016 ), 임의의 Lagrangian-Eulerian 방법 (ALE) (Khairallah and Anderson 2014 )을 사용하여 증발 반동 압력 (Hu et al. 2018 ) 및 Marangoni 대류 (Zhang et al. 2018 ) 현상을포함하는 열 전달 (온도 장) 및 물질 전달 (용융 흐름) 프로세스. 또한 이산 요소법 (DEM)을 사용하여 무작위 분산 분말 베드를 생성했습니다 (Lee and Zhang 2016 ; Wu et al. 2018 ). 이 모델은 분말 규모의 L-PBF 공정을 시뮬레이션했습니다 (Khairallah et al. 2016) 메조 스케일 (Khairallah 및 Anderson 2014 ), 단일 트랙 (Leitz et al. 2017 )에서 다중 트랙 (Foroozmehr et al. 2016 ) 및 다중 레이어 (Huang, Khamesee 및 Toyserkani 2019 )로.
그러나 결과적인 표면 거칠기를 결정하는 오버행 영역의 용융 풀 역학은 문헌에서 거의 관심을받지 못했습니다. 솔리드 영역의 L-PBF에 대한 기존 시뮬레이션 모델이 어느 정도 참조가 될 수 있지만 오버행 영역과 솔리드 영역 간의 용융 풀 역학에는 상당한 차이가 있습니다. 오버행 영역에서 용융 금속은 분말 입자 사이의 틈새로 아래로 흘러 용융 풀이 다공성 분말 베드가 제공하는 약한 지지체 아래로 가라 앉습니다. 이것은 중력과 표면 장력의 영향이 용융 풀의 결과적인 모양 / 크기를 결정하는 데 중요하며, 결과적으로 오버행 영역의 마이크로 스케일 형태의 진화에 중요합니다. 또한 분말 입자 사이의 공극, 열 조건 (예 : 에너지 흡수,2019 ; Karimi et al. 2020 ; 노래와 영 2020 ). 표면 거칠기는 (마이크로) 형상 편차를 증가시킬뿐만 아니라 주기적 하중 동안 미세 균열의 시작 지점 역할을함으로써 기계적 강도를 저하시킵니다 (Günther et al. 2018 ). 오버행 영역의 높은 표면 거칠기는 (마이크로) 정확도 / 품질에 대한 엄격한 요구 사항이있는 부품 제조에서 L-PBF의 적용을 제한합니다.
본 연구는 실험 및 시뮬레이션 연구를 사용하여 오버행 영역 (지지물없이 제작)의 미세 형상 편차 형성 메커니즘과 표면 거칠기의 기원을 체계적이고 포괄적으로 조사합니다. 결합 된 DEM-CFD 시뮬레이션 모델은 경계 트랙 윤곽, 분말 접착 및 뒤틀림 변형의 효과를 고려하여 오버행 영역의 용융 풀 역학과 표면 형태의 형성 메커니즘을 나타 내기 위해 개발되었습니다. 표면 거칠기 R의 시뮬레이션 및 단일 요인 L-PBF 인쇄 실험을 사용하여 오버행 각도의 함수로 연구됩니다. 용융 풀의 침몰과 관련된 오버행 영역에서 분말 접착의 세 가지 메커니즘이 식별되고 자세히 설명됩니다. 마지막으로, 인쇄 된 오버행 영역에서 높은 표면 거칠기 문제를 완화 할 수 있는 잠재적 솔루션에 대해 간략하게 설명합니다.
References
Cai, Chao, Chrupcala Radoslaw, Jinliang Zhang, Qian Yan, Shifeng Wen, Bo Song, and Yusheng Shi. 2019. “In-Situ Preparation and Formation of TiB/Ti-6Al-4V Nanocomposite via Laser Additive Manufacturing: Microstructure Evolution and Tribological Behavior.” Powder Technology 342: 73–84. doi:10.1016/j.powtec.2018.09.088. [Crossref], [Web of Science ®], [Google Scholar]
Cai, Chao, Wei Shian Tey, Jiayao Chen, Wei Zhu, Xingjian Liu, Tong Liu, Lihua Zhao, and Kun Zhou. 2021. “Comparative Study on 3D Printing of Polyamide 12 by Selective Laser Sintering and Multi Jet Fusion.” Journal of Materials Processing Technology 288 (August 2020): 116882. doi:10.1016/j.jmatprotec.2020.116882. [Crossref], [Web of Science ®], [Google Scholar]
Cai, Chao, Xu Wu, Wan Liu, Wei Zhu, Hui Chen, Jasper Dong Qiu Chua, Chen Nan Sun, Jie Liu, Qingsong Wei, and Yusheng Shi. 2020. “Selective Laser Melting of Near-α Titanium Alloy Ti-6Al-2Zr-1Mo-1V: Parameter Optimization, Heat Treatment and Mechanical Performance.” Journal of Materials Science and Technology 57: 51–64. doi:10.1016/j.jmst.2020.05.004. [Crossref], [Web of Science ®], [Google Scholar]
Charles, Amal, Ahmed Elkaseer, Lore Thijs, and Steffen G. Scholz. 2020. “Dimensional Errors Due to Overhanging Features in Laser Powder Bed Fusion Parts Made of Ti-6Al-4V.” Applied Sciences 10 (7): 2416. doi:10.3390/app10072416. [Crossref], [Google Scholar]
Chatham, Camden A., Timothy E. Long, and Christopher B. Williams. 2019. “A Review of the Process Physics and Material Screening Methods for Polymer Powder Bed Fusion Additive Manufacturing.” Progress in Polymer Science 93: 68–95. doi:10.1016/j.progpolymsci.2019.03.003. [Crossref], [Web of Science ®], [Google Scholar]
Du, Yang, Xinyu You, Fengbin Qiao, Lijie Guo, and Zhengwu Liu. 2019. “A Model for Predicting the Temperature Field during Selective Laser Melting.” Results in Physics 12 (November 2018): 52–60. doi:10.1016/j.rinp.2018.11.031. [Crossref], [Web of Science ®], [Google Scholar]
Duval-Chaneac, M. S., S. Han, C. Claudin, F. Salvatore, J. Bajolet, and J. Rech. 2018. “Experimental Study on Finishing of Internal Laser Melting (SLM) Surface with Abrasive Flow Machining (AFM).” Precision Engineering 54 (July 2017): 1–6. doi:10.1016/j.precisioneng.2018.03.006. [Crossref], [Web of Science ®], [Google Scholar]
Feng, Shaochuan, Shijie Chen, Amar M. Kamat, Ru Zhang, Mingji Huang, and Liangcai Hu. 2020. “Investigation on Shape Deviation of Horizontal Interior Circular Channels Fabricated by Laser Powder Bed Fusion.” Additive Manufacturing 36 (December): 101585. doi:10.1016/j.addma.2020.101585. [Crossref], [Web of Science ®], [Google Scholar]
Feng, Shaochuan, Chuanzhen Huang, Jun Wang, Hongtao Zhu, Peng Yao, and Zhanqiang Liu. 2017. “An Analytical Model for the Prediction of Temperature Distribution and Evolution in Hybrid Laser-Waterjet Micro-Machining.” Precision Engineering 47: 33–45. doi:10.1016/j.precisioneng.2016.07.002. [Crossref], [Web of Science ®], [Google Scholar]
Feng, Shaochuan, Amar M. Kamat, and Yutao Pei. 2021. “Design and Fabrication of Conformal Cooling Channels in Molds: Review and Progress Updates.” International Journal of Heat and Mass Transfer. doi:10.1016/j.ijheatmasstransfer.2021.121082. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
Flow-3D V11.2 Documentation. 2016. Flow Science, Inc. [Crossref], [Google Scholar]
Foroozmehr, Ali, Mohsen Badrossamay, Ehsan Foroozmehr, and Sa’id Golabi. 2016. “Finite Element Simulation of Selective Laser Melting Process Considering Optical Penetration Depth of Laser in Powder Bed.” Materials and Design 89: 255–263. doi:10.1016/j.matdes.2015.10.002. [Crossref], [Web of Science ®], [Google Scholar]
“Geometrical Product Specifications (GPS) — Surface Texture: Profile Method — Rules and Procedures for the Assessment of Surface Texture (ISO 4288).” 1996. International Organization for Standardization. https://www.iso.org/standard/2096.html. [Google Scholar]
Günther, Johannes, Stefan Leuders, Peter Koppa, Thomas Tröster, Sebastian Henkel, Horst Biermann, and Thomas Niendorf. 2018. “On the Effect of Internal Channels and Surface Roughness on the High-Cycle Fatigue Performance of Ti-6Al-4V Processed by SLM.” Materials & Design 143: 1–11. doi:10.1016/j.matdes.2018.01.042. [Crossref], [Web of Science ®], [Google Scholar]
Hopkinson, Neil, and Phill Dickens. 2000. “Conformal Cooling and Heating Channels Using Laser Sintered Tools.” In Solid Freeform Fabrication Conference, 490–497. Texas. doi:10.26153/tsw/3075. [Crossref], [Google Scholar]
Hu, Zhiheng, Haihong Zhu, Changchun Zhang, Hu Zhang, Ting Qi, and Xiaoyan Zeng. 2018. “Contact Angle Evolution during Selective Laser Melting.” Materials and Design 139: 304–313. doi:10.1016/j.matdes.2017.11.002. [Crossref], [Web of Science ®], [Google Scholar]
Hu, Cheng, Kejia Zhuang, Jian Weng, and Donglin Pu. 2019. “Three-Dimensional Analytical Modeling of Cutting Temperature for Round Insert Considering Semi-Infinite Boundary and Non-Uniform Heat Partition.” International Journal of Mechanical Sciences 155 (October 2018): 536–553. doi:10.1016/j.ijmecsci.2019.03.019. [Crossref], [Web of Science ®], [Google Scholar]
Huang, Yuze, Mir Behrad Khamesee, and Ehsan Toyserkani. 2019. “A New Physics-Based Model for Laser Directed Energy Deposition (Powder-Fed Additive Manufacturing): From Single-Track to Multi-Track and Multi-Layer.” Optics & Laser Technology 109 (August 2018): 584–599. doi:10.1016/j.optlastec.2018.08.015. [Crossref], [Web of Science ®], [Google Scholar]
Kadirgama, K., W. S. W. Harun, F. Tarlochan, M. Samykano, D. Ramasamy, Mohd Zaidi Azir, and H. Mehboob. 2018. “Statistical and Optimize of Lattice Structures with Selective Laser Melting (SLM) of Ti6AL4V Material.” International Journal of Advanced Manufacturing Technology 97 (1–4): 495–510. doi:10.1007/s00170-018-1913-1. [Crossref], [Web of Science ®], [Google Scholar]
Kamat, Amar M, and Yutao Pei. 2019. “An Analytical Method to Predict and Compensate for Residual Stress-Induced Deformation in Overhanging Regions of Internal Channels Fabricated Using Powder Bed Fusion.” Additive Manufacturing 29 (March): 100796. doi:10.1016/j.addma.2019.100796. [Crossref], [Web of Science ®], [Google Scholar]
Kamath, Chandrika, Bassem El-Dasher, Gilbert F. Gallegos, Wayne E. King, and Aaron Sisto. 2014. “Density of Additively-Manufactured, 316L SS Parts Using Laser Powder-Bed Fusion at Powers up to 400 W.” International Journal of Advanced Manufacturing Technology 74 (1–4): 65–78. doi:10.1007/s00170-014-5954-9. [Crossref], [Web of Science ®], [Google Scholar]
Karimi, J., C. Suryanarayana, I. Okulov, and K. G. Prashanth. 2020. “Selective Laser Melting of Ti6Al4V: Effect of Laser Re-Melting.” Materials Science and Engineering A (July): 140558. doi:10.1016/j.msea.2020.140558. [Crossref], [Web of Science ®], [Google Scholar]
Khairallah, Saad A., and Andy Anderson. 2014. “Mesoscopic Simulation Model of Selective Laser Melting of Stainless Steel Powder.” Journal of Materials Processing Technology 214 (11): 2627–2636. doi:10.1016/j.jmatprotec.2014.06.001. [Crossref], [Web of Science ®], [Google Scholar]
Khairallah, Saad A., Andrew T. Anderson, Alexander Rubenchik, and Wayne E. King. 2016. “Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones.” Edited by Adedeji B. Badiru, Vhance V. Valencia, and David Liu. Acta Materialia 108 (April): 36–45. doi:10.1016/j.actamat.2016.02.014. [Crossref], [Web of Science ®], [Google Scholar]
Kuo, C. N., C. K. Chua, P. C. Peng, Y. W. Chen, S. L. Sing, S. Huang, and Y. L. Su. 2020. “Microstructure Evolution and Mechanical Property Response via 3D Printing Parameter Development of Al–Sc Alloy.” Virtual and Physical Prototyping 15 (1): 120–129. doi:10.1080/17452759.2019.1698967. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
Le, K. Q., C. H. Wong, K. H. G. Chua, C. Tang, and H. Du. 2020. “Discontinuity of Overhanging Melt Track in Selective Laser Melting Process.” International Journal of Heat and Mass Transfer 162 (December): 120284. doi:10.1016/j.ijheatmasstransfer.2020.120284. [Crossref], [Web of Science ®], [Google Scholar]
Lee, Y. S., and W. Zhang. 2016. “Modeling of Heat Transfer, Fluid Flow and Solidification Microstructure of Nickel-Base Superalloy Fabricated by Laser Powder Bed Fusion.” Additive Manufacturing 12: 178–188. doi:10.1016/j.addma.2016.05.003. [Crossref], [Web of Science ®], [Google Scholar]
Leitz, K. H., P. Singer, A. Plankensteiner, B. Tabernig, H. Kestler, and L. S. Sigl. 2017. “Multi-Physical Simulation of Selective Laser Melting.” Metal Powder Report 72 (5): 331–338. doi:10.1016/j.mprp.2016.04.004. [Crossref], [Google Scholar]
Li, Jian, Jing Hu, Yi Zhu, Xiaowen Yu, Mengfei Yu, and Huayong Yang. 2020. “Surface Roughness Control of Root Analogue Dental Implants Fabricated Using Selective Laser Melting.” Additive Manufacturing 34 (September 2019): 101283. doi:10.1016/j.addma.2020.101283. [Crossref], [Web of Science ®], [Google Scholar]
Li, Yingli, Kun Zhou, Pengfei Tan, Shu Beng Tor, Chee Kai Chua, and Kah Fai Leong. 2018. “Modeling Temperature and Residual Stress Fields in Selective Laser Melting.” International Journal of Mechanical Sciences 136 (February): 24–35. doi:10.1016/j.ijmecsci.2017.12.001. [Crossref], [Web of Science ®], [Google Scholar]
Mazur, MacIej, Martin Leary, Matthew McMillan, Joe Elambasseril, and Milan Brandt. 2016. “SLM Additive Manufacture of H13 Tool Steel with Conformal Cooling and Structural Lattices.” Rapid Prototyping Journal 22 (3): 504–518. doi:10.1108/RPJ-06-2014-0075. [Crossref], [Web of Science ®], [Google Scholar]
Mingear, Jacob, Bing Zhang, Darren Hartl, and Alaa Elwany. 2019. “Effect of Process Parameters and Electropolishing on the Surface Roughness of Interior Channels in Additively Manufactured Nickel-Titanium Shape Memory Alloy Actuators.” Additive Manufacturing 27 (October 2018): 565–575. doi:10.1016/j.addma.2019.03.027. [Crossref], [Web of Science ®], [Google Scholar]
Pakkanen, Jukka, Flaviana Calignano, Francesco Trevisan, Massimo Lorusso, Elisa Paola Ambrosio, Diego Manfredi, and Paolo Fino. 2016. “Study of Internal Channel Surface Roughnesses Manufactured by Selective Laser Melting in Aluminum and Titanium Alloys.” Metallurgical and Materials Transactions A 47 (8): 3837–3844. doi:10.1007/s11661-016-3478-7. [Crossref], [Web of Science ®], [Google Scholar]
Patterson, Albert E., Sherri L. Messimer, and Phillip A. Farrington. 2017. “Overhanging Features and the SLM/DMLS Residual Stresses Problem: Review and Future Research Need.” Technologies 5 (4): 15. doi:10.3390/technologies5020015. [Crossref], [Web of Science ®], [Google Scholar]
Roberts, I. A., C. J. Wang, R. Esterlein, M. Stanford, and D. J. Mynors. 2009. “A Three-Dimensional Finite Element Analysis of the Temperature Field during Laser Melting of Metal Powders in Additive Layer Manufacturing.” International Journal of Machine Tools and Manufacture 49 (12–13): 916–923. doi:10.1016/j.ijmachtools.2009.07.004. [Crossref], [Web of Science ®], [Google Scholar]
Shrestha, Subin, and Kevin Chou. 2018. “Computational Analysis of Thermo-Fluid Dynamics with Metallic Powder in SLM.” In CFD Modeling and Simulation in Materials Processing 2018, edited by Laurentiu Nastac, Koulis Pericleous, Adrian S. Sabau, Lifeng Zhang, and Brian G. Thomas, 85–95. Cham, Switzerland: Springer Nature. doi:10.1007/978-3-319-72059-3_9. [Crossref], [Google Scholar]
Sing, S. L., and W. Y. Yeong. 2020. “Laser Powder Bed Fusion for Metal Additive Manufacturing: Perspectives on Recent Developments.” Virtual and Physical Prototyping 15 (3): 359–370. doi:10.1080/17452759.2020.1779999. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
Šmilauer, Václav, Emanuele Catalano, Bruno Chareyre, Sergei Dorofeenko, Jérôme Duriez, Nolan Dyck, Jan Eliáš, et al. 2015. Yade Documentation. 2nd ed. The Yade Project. doi:10.5281/zenodo.34073. [Crossref], [Google Scholar]
Tan, Pengfei, Fei Shen, Biao Li, and Kun Zhou. 2019. “A Thermo-Metallurgical-Mechanical Model for Selective Laser Melting of Ti6Al4V.” Materials & Design 168 (April): 107642. doi:10.1016/j.matdes.2019.107642. [Crossref], [Web of Science ®], [Google Scholar]
Tan, Lisa Jiaying, Wei Zhu, and Kun Zhou. 2020. “Recent Progress on Polymer Materials for Additive Manufacturing.” Advanced Functional Materials 30 (43): 1–54. doi:10.1002/adfm.202003062. [Crossref], [Web of Science ®], [Google Scholar]
Wang, Xiaoqing, and Kevin Chou. 2018. “Effect of Support Structures on Ti-6Al-4V Overhang Parts Fabricated by Powder Bed Fusion Electron Beam Additive Manufacturing.” Journal of Materials Processing Technology 257 (February): 65–78. doi:10.1016/j.jmatprotec.2018.02.038. [Crossref], [Web of Science ®], [Google Scholar]
Wang, Di, Yongqiang Yang, Ziheng Yi, and Xubin Su. 2013. “Research on the Fabricating Quality Optimization of the Overhanging Surface in SLM Process.” International Journal of Advanced Manufacturing Technology 65 (9–12): 1471–1484. doi:10.1007/s00170-012-4271-4. [Crossref], [Web of Science ®], [Google Scholar]
Wen, Peng, Maximilian Voshage, Lucas Jauer, Yanzhe Chen, Yu Qin, Reinhart Poprawe, and Johannes Henrich Schleifenbaum. 2018. “Laser Additive Manufacturing of Zn Metal Parts for Biodegradable Applications: Processing, Formation Quality and Mechanical Properties.” Materials and Design 155: 36–45. doi:10.1016/j.matdes.2018.05.057. [Crossref], [Web of Science ®], [Google Scholar]
Wu, Yu-che, Cheng-hung San, Chih-hsiang Chang, Huey-jiuan Lin, Raed Marwan, Shuhei Baba, and Weng-Sing Hwang. 2018. “Numerical Modeling of Melt-Pool Behavior in Selective Laser Melting with Random Powder Distribution and Experimental Validation.” Journal of Materials Processing Technology 254 (November 2017): 72–78. doi:10.1016/j.jmatprotec.2017.11.032. [Crossref], [Web of Science ®], [Google Scholar]
Yadroitsev, I., P. Krakhmalev, I. Yadroitsava, S. Johansson, and I. Smurov. 2013. “Energy Input Effect on Morphology and Microstructure of Selective Laser Melting Single Track from Metallic Powder.” Journal of Materials Processing Technology 213 (4): 606–613. doi:10.1016/j.jmatprotec.2012.11.014. [Crossref], [Web of Science ®], [Google Scholar]
Yu, Wenhui, Swee Leong Sing, Chee Kai Chua, and Xuelei Tian. 2019. “Influence of Re-Melting on Surface Roughness and Porosity of AlSi10Mg Parts Fabricated by Selective Laser Melting.” Journal of Alloys and Compounds 792: 574–581. doi:10.1016/j.jallcom.2019.04.017. [Crossref], [Web of Science ®], [Google Scholar]
Zhang, Dongyun, Pudan Zhang, Zhen Liu, Zhe Feng, Chengjie Wang, and Yanwu Guo. 2018. “Thermofluid Field of Molten Pool and Its Effects during Selective Laser Melting (SLM) of Inconel 718 Alloy.” Additive Manufacturing 21 (100): 567–578. doi:10.1016/j.addma.2018.03.031. [Crossref], [Web of Science ®], [Google Scholar]
시뮬레이션 비디오 갤러리에서 FLOW-3D 제품군으로 모델링 할 수 있는 다양한 가능성을 살펴보십시오 .
적층 제조 시뮬레이션 갤러리
FLOW-3D AM 은 레이저 파우더 베드 융합, 바인더 제트 및 직접 에너지 증착과 같은 적층 제조 공정을 시뮬레이션하고 분석합니다. FLOW-3D AM 의 다중 물리 기능은 공정 매개 변수의 분석 및 최적화를 위해 분말 확산 및 압축, 용융 풀 역학, L-PBF 및 DED에 대한 다공성 형성, 바인더 분사 공정을 위한 수지 침투 및 확산에 대한 매우 정확한 시뮬레이션을 제공합니다.
Multi-material Laser Powder Bed Fusion | FLOW-3D AM
Micro and meso scale simulations using FLOW-3D AM help us understand the mixing of different materials in the melt pool and the formation of potential defects such as lack of fusion and porosity. In this simulation, the stainless steel and aluminum powders have independently-defined temperature dependent material properties that FLOW-3D AM tracks to accurately capture the melt pool dynamics. Learn more about FLOW-3D AM’s mutiphysics simulation capabilities at https://www.flow3d.com/products/flow3…
FLOW-3D WELD 는 레이저 용접 공정에 대한 강력한 통찰력을 제공하여 공정 최적화를 달성합니다. 더 나은 공정 제어로 다공성, 열 영향 영역을 최소화하고 미세 구조 진화를 제어 할 수 있습니다. 레이저 용접 공정을 정확하게 시뮬레이션하기 위해 FLOW-3D WELD 는 레이저 열원, 레이저-재료 상호 작용, 유체 흐름, 열 전달, 표면 장력, 응고, 다중 레이저 반사 및 위상 변화를 특징으로 합니다.
FLOW-3D는 물고기 통로, 댐 파손, 배수로, 눈사태, 수력 발전 및 기타 수자원 및 환경 공학 과제 모델링을 포함하여 유압 산업에 대한 많은 응용 분야를 가지고 있습니다. 엔지니어는 수력 발전소의 기존 인프라 용량을 늘리고, 어류 통로, 수두 손실을 최소화하는 흡입구, 포 이베이 설계 및 테일 레이스 흐름을위한 개선 된 설계를 개발하고, 수세 및 퇴적 및 공기 유입을 분석 할 수 있습니다.
FLOW-3D CAST 에는 캐스팅을 위해 특별히 설계된 광범위하고 강력한 물리적 모델이 포함되어 있습니다. 이러한 특수 모델에는 lost foam casting, non-Newtonian fluids, and die cycling에 대한 알고리즘이 포함됩니다. FLOW-3D CAST 의 강력한 시뮬레이션 엔진과 결함 예측을 위한 새로운 도구는 설계주기를 단축하고 비용을 절감 할 수 있는 통찰력을 제공합니다.
HPDC |Comparison of slow shot profiles and entrained air during a filling simulation |FLOW-3D CAST
Shown is a video comparing two slow shot profiles. The graphs highlight the shot profiles through time and the difference in entrained air between the slow shots. Note the lack of air entrained in shot sleeve with calculated shot profile which yields a much better controlled flow within the shot sleeve.
FLOW-3D는 선박 설계, 슬로싱 다이내믹스, 파동 충격 및 환기 등 연안 및 해양 애플리케이션에 이상적인 소프트웨어입니다. 연안 애플리케이션의 경우 FLOW-3D는 연안 구조물에 심각한 폭풍과 쓰나미 파장의 세부 정보를 정확하게 예측하고 플래시 홍수 및 중요 구조물 홍수 및 손상 분석에 사용됩니다.
본질적으로 Lagrangian 입자는 복잡한 흐름에서 물리량을 추적하는 독특한 방법을 가지고 있습니다. 이들의 속성은 메시 해상도에 의해 덜 제한되며, 동시에 질량, 운동량 및 열 전달을 통해 유체 및 고체와 함께 매우 세부적이고 사실적으로 상호 작용할 수 있습니다. 후 처리(Post Processing) 측면에서 입자는 시각화를 향상 시킬 수 있습니다.
FLOW-3D의 Lagrangian 입자 모델
FLOW-3D의 입자 모델은 전기장 효과 및 유체 흐름과의 양방향 커플 링을 포함하여 마커에서 크기와 밀도가 다른 질량 입자로 진화했습니다. 이 모델은 공기 중의 오염 물질, 금속 함유물 및 분리기에서 포착되는 파편을 추적하는데 성공적으로 적용되었습니다. 최근에는 FLOW-3D의 입자 모델이 기능을 확장하기 위한 큰 변화가 있었습니다. 현재 모델에서 입자는 기본 기능에 따라 클래스로 그룹화됩니다.
마커 입자 는 단순한 질량이 없는 마커로 유체 흐름을 추적하는 데 가장 적합합니다.
질량 입자 는 모래 알갱이 또는 내포물과 같은 고체 물체를 나타냅니다.
액체 입자 는 유체로 만들어지며 모든 유체 속성을 상속합니다.
가스 입자 는 주변 유체의 온도 및 압력 부하에 따라 크기가 변하는 기포를 나타냅니다.
보이드 입자 는 가스 입자와 유사하지만 그 특정 기능은 붕괴된 기포를 표시하고 추적하는 것입니다. 이는 다른 응용 분야에서 주조시 금형 충전 중에 생성되는 잠재적 다공성 결함을 예측하는 데 유용합니다.
프로브 입자 는 해당 위치에서 변수 값을 기록하고 보고하는 진단 장치로 사용됩니다. 다른 클래스의 입자로 만들 수 있습니다.
사용자 입자 는 소스 코드에서 사용자 정의 함수를 통해 사용자 정의를 할 수 있습니다.
각 입자 클래스에는 드래그 계수 및 각 숫자 입자가 물리적 입자의 구름을 나타낼 수 있는 매크로 입자 계수와 같이 클래스의 모든 입자에 적용되는 속성이 있습니다. 사용자 클래스의 입자에는 사용자가 사용자 정의 할 수 있는 세 가지 추가 속성이 있습니다.
다양한 크기와 밀도의 입자를 나타내는 재료 입자 클래스 내에서 여러 종을 정의 할 수 있습니다. 주변 유체와의 열 전달은 모든 재료 입자, 즉 질량, 액체, 가스, 보이드 및 사용자 입자에 적용되는 또 다른 기능입니다.
가스 입자의 압력은 상태 방정식과 온도 변화에 따른 변화를 사용하여 계산됩니다. 기체 입자가 유체가 없는 표면을 벗어나면 기체 영역에 부피를 추가합니다.
액체 입자의 유체는 응고 뿐만 아니라 증발 및 응축으로 인해 상 변화를 겪을 수 있습니다. 응고된 입자는 질량 입자와 유사한 고체 물체로 작동하지만 일단 들어가서 다시 녹으면 유체로 변환됩니다. 또한 2 유체 상 변화 모델이 활성화되면 액체 입자가 기체 내에서 이동하면서 증발 및 응축될 수 있으므로 스프레이 냉각 모델링에 유용합니다.
각 파티클 클래스는 FLOW-3D POST 에서 별도의 개체로 시각화 할 수 있습니다. 속도, 온도, 입자 수명 또는 고유 ID와 같은 개별 입자 속성을 색상에 사용할 수 있습니다. 표시된 입자 크기는 클래스 내에서의 변화를 반영합니다.
Lagrangian 입자를 직접 금속 증착에 적용
직접 금속 증착은 동일한 금속의 분말 스트림이 주입되는 고체 금속 기판에 용융 풀을 형성하기 위해 레이저를 사용하는 적층 제조 공정의 한 유형입니다. 분말 입자가 풀 내부에서 녹고, 풀이 다시 응고되면 일반적으로 두께가 0.2-0.8mm이고 너비가 1-2mm 인 고형화된 금속 층이 형성됩니다.
laser/powder gun 어셈블리가 기판 표면을 계속 스캔하므로 복잡한 모양을 층별로 만들 수 있습니다. 레이저 출력, 속도 및 분말 공급 사이의 적절한 균형은 공정의 성공과 효율성을 위해 중요합니다. 엔지니어의 주요 관심 사항은 다음과 같습니다.
용융 풀의 크기와 모양
금속 흐름 및 그 내부의 냉각 속도
응고된 층의 형상
이 섹션에서 설명하는 시뮬레이션은 이러한 특성을 정확하게 예측합니다. 레이저와 기판의 움직임은 좌표계를 레이저에 부착함으로써 반전됩니다. Inconel 718 합금의 기판은 10mm/s의 일정 속도로 움직입니다. 레이저는 1.8kW의 출력으로 반경 1mm의 원형 열원으로 모델링됩니다. 3 개의 파우더 건은 0.684 g/s의 속도로 레이저 충돌 점에서 고체 금속 입자를 전달합니다. 각 건은 크기가 2 x 2 mm이고 초당 입자 비율은 105 입니다.
입자는 액체 입자 클래스를 사용하여 모델링됩니다. 모든 입자의 직경은 40 μm입니다. 매크로 입자 배율 10은 시뮬레이션에서 입자 수를 줄이는데 사용됩니다. 3백만 개의 물리적 입자를 나타내는 매 초당 시뮬레이션에서 3 x 105 개의 숫자 입자가 생성됩니다. 입자의 초기 온도는 480°C입니다. 즉, 풀에 충돌하기 전에 고체 상태입니다.
시뮬레이션은 분말을 첨가하기 전에 용융 풀이 형성 될 수 있도록, 시작한 후 2초 후에 입자 소스를 활성화하여 10초 동안 실행했습니다. 일단 풀에 들어가면 입자가 녹아 금속으로 전환되어 금속의 부피가 증가하여 궁극적으로 레이저에서 하류의 재응고 금속 층을 형성합니다. 용융 풀 모양은 대칭 평면에 표시됩니다.
새로운 Lagrangian 입자 모델은 FLOW-3D의 현재 기능을 크게 확장 할 뿐만 아니라 금속의 핵심 가스 버블 추적과 같은 향후 확장을 위한 강력한 개발 플랫폼을 만듭니다.
Additive Manufacturing 기술이 새로운 제조 방식을 계속 발전시키면서 CFD 모델링은 공정 개발 및 최적화와, 재료의 변화를 이해하고, 설계 및 연구를 수행하는 매우 유용한 도구가 되었습니다. 이 웨비나에서는 최첨단 CFD 소프트웨어 FLOW-3D AM이 레이저 파우더 베드 융합 및 직접 에너지 증착 공정에서 용융 풀 역학을 모델링하는데 어떻게 사용되는지 살펴볼 것입니다. 그런 다음 유용한 정보를 얻기 위해 모델 데이터의 추출 및 분석에 집중하고 FLOW-3D AM에서 최근에 구현된 기능에 대해 논의합니다. 마지막으로 레이저 용접 및 적층 제조 응용 분야 모두에 적용할 수 있는 관련 산업 사례 연구를 검토하여 산업 응용 분야에 소프트웨어 사용을 보여줍니다.
등록 링크https://zoom.us/webinar/register/7516034917241/WN_tik88gXJRzult2_HDNIzPA 산지 표준시(미국 및 캐나다)의 2021년 5월 5일 11:00 오전 (현지 시간) 이벤트 주최: FLOW-3D
발표자
Paree AlluSenior CFD Engineer @Flow Science, Inc.Paree Allu is a Senior CFD Engineer with Flow Science, where he leads the technical and business strategy for Flow Science’s additive manufacturing and laser welding software solutions. Paree holds a Master’s Degree in Mechanical Engineering from The Ohio State University.
Allyce JackmanCFD Engineer @Flow Science, Inc.Allyce Jackman is a CFD Engineer with Flow Science, where she specializes in laser welding, coating, and complex multiphysics applications. Allyce holds a Bachelor’s Degree in Mechanical Engineering from the University of New Mexico.
FLOW-3D@DEM을 이용하여 분말 적층 공정(파우더 베드 방식) 해석이 가능합니다. 여기에서는 재질: Ni 합금 (Inconel 718), 적층 피치 60μm 정도를 실시한 사례입니다. 지름 20um의 입자를 기준으로 지정하고, 자유낙하에 의해 베드를 형성합니다. 입자는 높이 방향으로 3개 정도로 적층되었습니다. 일정한 입경(case 1)에 미세한 입자를 섞은 것(case2)은 충전율이 높아졌습니다. 한편 굵은 입자를 지정한 케이스(case3)는 충전율이 나빠지는 결과를 확인할 수 있었습니다.
FLOW-3D WELD 용융지 형성 후 다시 응고되어 가는 모습 확인
FLOW-3D@ DEM에서 얻은 입자 배드에 레이저를 조사하여 용융 해석을 실시한 사례입니다. FLOW-3D@ WELD에서는 레이저에 의한 에너지 밀도 분포를 부여하여 열, 유동 해석을 실시합니다. 용융지가 형성되었다가 다시 응고되어 가는 모습을 확인할 수 있습니다.
입자 충전율이 높은 경우(case2)에서는 용융지가 비교적 직선으로 늘어나지만 충전율이 낮은 경우에 구불구불한 형태로 용융지가 형성되었습니다. 입자가 형성되는 표면 형상, 틈새가 비드 형성에 영향을 준다는 것을 알 수 있습니다.
F.SAI를 이용한 열응력 해석
FEM mesh 데이터와 FLOW-3D@ 결과 파일에서 구조 인터페이스 F.SAI를 이용하여 온도 데이터를 추출합니다.
여기에서는 case2의 결과를 이용하여 온도 데이터를 추출하여 얻을 수 있고, 온도 데이터를 하중 데이터로 하여 각종 구조해석 소프트웨어에서 열응력 해석을 실시했습니다.
오른쪽 그림에 NX Nastran, MSC Nastran, Marc의 결과를 보여 줍니다. 수축에 의한 응력의 발생과 변위의 모습을 확인할 수 있습니다.
FLOW-3D는 자유 표면 유체 흐름 시뮬레이션을 전문으로하는 다중 물리 CFD 소프트웨어입니다. 자유 표면의 동적 진화를 추적하는 소프트웨어의 알고리즘인 VOF (Volume of Fluid) 방법은 Flow Science의 설립자인 Tony Hirt 박사가 개척했습니다.
또한 FLOW-3D에는 금속 주조, 잉크젯 인쇄, 레이저 용접 및 적층 제조 (AM)와 같은 광범위한 응용 분야를 시뮬레이션하기위한 물리 모델이 내장되어 있습니다. 적층 제조 시뮬레이션 소프트웨어, 특히 L-PBF (레이저 파우더 베드 융합 공정)의 현상 유지는 열 왜곡, 잔류 응력 및지지 구조 생성과 같은 부분 규모 모델링에 도움이되는 열 기계 시뮬레이션에 초점을 맞추고 있습니다.
유용하지만 용융 풀 역학 및 볼링 및 다공성과 같은 관련 결함에 대한 정보는 일반적으로 이러한 접근 방식의 영역 밖에 있습니다. 용융 풀 내의 유체 흐름, 열 전달 및 표면 장력이 열 구배 및 냉각 속도에 영향을 미치며 이는 다시 미세 구조 진화에 영향을 미친다는 점을 명심하는 것도 중요합니다.
FLOW-3D와 이산 요소법 (DEM) 및 WELD 모듈을 사용하여 분말 및 용융 풀 규모에서 시뮬레이션 할 수 있습니다. 구현되는 관련 물리학에는 점성 흐름, 열 전달, 응고, 상 변화, 반동 압력, 차폐 가스 압력, 표면 장력, 움직이는 물체 및 분말 / 입자 역학이 포함됩니다. 이러한 접근 방식은 합금에 대한 공정을 성공적으로 개발할 수 있게 하고, AM 기계 제조업체와 AM 기술의 최종 사용자 모두에게 관심있는 미세 구조 진화에 대한 통찰력을 제공하는데 도움이 됩니다.
FLOW-3D는 레이저 분말 베드 융합 (L-PBF), 직접 에너지 증착 (DED) 및 바인더 제트 공정으로 확장되는 기능을 가지고 있습니다. FLOW-3D를 사용하면 분말 확산 및 패킹, 레이저 / 입자 상호 작용, 용융 풀 역학, 표면 형태 및 후속 미세 구조 진화를 정확하게 시뮬레이션 할 수 있습니다. 이러한 기능은 FLOW-3D에 고유하며 계산 효율성이 높은 방식으로 달성됩니다.
예를 들어 1.0mm x 0.4mm x 0.3mm 크기의 계산 영역에서 레이저 빔의 단일 트랙을 시뮬레이션하기 위해 레이저 용융 모델은 단 8 개의 물리적 코어에서 약 2 시간이 걸립니다. FLOW-3D는 모든 관련 물리 구현 간의 격차를 해소하는 동시에 업계 및 연구 표준에서 허용하는 시간 프레임으로 결과를 생성합니다. 분말 패킹, 롤러를 통한 파워 확산, 분말의 레이저 용융, 용융 풀 형성 및 응고를 고려하고 다층 분말 베드 융합 공정을 위해 이러한 단계를 순차적으로 반복하여 FLOW-3D에서 전체 AM 공정을 시뮬레이션 할 수 있습니다.
FLOW-3D의 다층 시뮬레이션은 이전에 응고된 층의 열 이력을 저장한다는 점에서 독특하며, 열 전달을 고려하여 이전에 응고된 층에 확산된 새로운 분말 입자 세트에 대해 시뮬레이션이 수행됩니다. 또한, 응고 된 베드의 열 왜곡 및 잔류 응력은 FLOW-3D를 사용하여 평가할 수 있으며, 보다 복잡한 분석을 수행하기 위해 FLOW-3D의 압력 및 온도 데이터를 Abaqus 및 MSC Nastran과 같은 FEA 소프트웨어로 내보낼 수 있습니다.
Ease of Use
FLOW-3D는 다양한 응용 분야에서 거의 40 년 동안 사용되어 왔습니다. 사용자 피드백을 기반으로 UI 개발자는 소프트웨어를 사용하기 매우 직관적으로 만들었으며 새로운 사용자는 시뮬레이션 설정의 순서를 거의 또는 전혀 어려움없이 이해합니다. 사용자는 FLOW3D에서 구현 된 다양한 모델의 이론에 정통하며 새로운 실험을 설계 할 수 있습니다. 실습 튜토리얼, 비디오 강의, 예제 시뮬레이션 및 기술 노트의 저장소도 사용할 수 있습니다. 사용자가 특정 수준의 경험에 도달하면 고급 수치 교육 및 소프트웨어 사용자 지정 교육을 사용할 수 있습니다.
Available Literature
실험 데이터에 대해 FLOW-3D 모델을 검증하는 몇 가지 독립적으로 발표된 연구가 있습니다. 여기에서 수록된 저널 논문은 레이저 용접 및 적층 제조 공정으로 제한됩니다. 더 많은 참조는 당사 웹 사이트에서 확인할 수 있습니다.
Laser Welding
L.J.Zhang, J.X.Zhang, A.Gumenyuk, M.Rethmeier, S.J.Na, Numerical simulation of full penetration laser welding of thick steel plate with high power high brightness laser, Journal of Materials Processing Technology, Volume 214, Issue 8, 2014. A study by researchers from BAM in Germany, KAIST in Korea, and State Key Laboratory of Mechanical Behavior of Materials in China that focuses on keyhole dynamics and full penetration laser welding of steel plates.
Runqi Lin, Hui-ping Wang, Fenggui Lu, Joshua Solomon, Blair E. Carlson, Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys, International Journal of Heat and Mass Transfer, Volume 108, Part A, 2017. General Motors (GM) and Shangai University collaborated on a study on the influence of welding speed and weld angle of inclination on porosity occurrence in laser keyhole welding.
Koji Tsukimoto, Masashi Kitamura, Shuji Tanigawa, Sachio Shimohata, and Masahiko Mega, Laser Welding Repair for Single Crystal Blades, International Gas Turbine Congress, Tokyo, 2015. Mitsubishi Heavy Industry’s study on laser welding repair using laser cladding for single Ni crystal alloys used in gas turbine blades.
Additive Manufacturing
Yu-Che Wu, Cheng-Hung San, Chih-Hsiang Chang, Huey-Jiuan Lin, Raed Marwan, Shuhei Baba, Weng-Sing Hwang, Numerical modeling of melt-pool behavior in selective laser melting with random powder distribution and experimental validation, Journal of Materials Processing Technology, Volume 254, 2018 This paper discusses powder bed compaction with random packing for different powder-size distributions, and the importance of considering evaporation effects in the melting process to validate the melt pool dimensions.
Lee, Y.S., and W.Zhang, Mesoscopic simulation of heat transfer and fluid flow in laser powder bed additive manufacturing, Proceedings of the Annual International Solid Freeform Fabrication Symposium, Austin, TX, USA. 2015 A study conducted by Ohio State University researchers to understand the influence of process parameters in formation of balling defects.
Y.S. Lee, W.Zhang, Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion, Additive Manufacturing, Volume 12, Part B, 2016 A study conducted by Ohio State University researchers to understand the influence of solidification parameters, calculated from the temperature fields, on solidification morphology and grain size using existing theoretical models in laser powder bed fusion processes.
코드 편집 중 코드 에디터 나가기 제목 추가 Fluid dynamics modelling for additive manufacturing 텍스트 또는 HTML 입력
AM프로세스에 CFD를 사용해야하는 이유
AM의 용융 풀(Melt pool) 분해능(0.01 – 0.001mm 길이 스케일)에서 유체 흐름을 정확하게 표현 – 파우더 페드 퍼짐(Powder bed spreading) : DEM(Discrete Element Method)을 통해 파우더 베드 압축 및 흡수 특성을 예측하는데 도움 – 선택적 레이저 용해 : 결함 설계 공간 및 용융 풀(Melt pooe) 형상 매핑 및 예측 – 빠른 응고(Solidification) : 구성 분리 및 위상 핵(Phase nucleation) 형성 및 예측
파우더 증착 및 레이저 용융(Powder deposition and laser melting)
모델 입력 : 파우더 크기 분포, 합금 재료 특성 및 레이저 공정 매개 변수
모델 출력 : 가열/냉각 프로파일, 결함 밀도, 조성 변화
연속 및 펄스 레이저 용융
Takeaway : 두 매개 변수 세트 모두 고밀도 재료를 생산하지만 열 이력(History)은 상당히 다름
모델 정확도 및 검증
NiTi, Ti64 및 316L에서 수행된 모델 검증
용융 풀(Melt pool) 형태 및 키홀링(Keyholing)
공정 공간에서 열분해에 대한 경향
패널 토글: All In One SEO Pack 메인 설정소셜 설정 Help 프로 버전으로 업그레이드 하기 스니펫 미리보기 Fluid dynamics modelling for additive manufacturing | FLOW-3D /fluid-dynamics-modelling-for-additive-manufacturing/ 타이틀 Fluid dynamics modelling for additive manufacturing
61 문자. 대부분의 검색 엔진은 60의 최대 타이틀 문자를 사용합니다. 설명
0 문자. 대부분의 검색 엔진은 160의 최대 설명 문자를 사용합니다. 키워드 (쉼표로 분리) 사용자 정의 대표(canonical) URL NOINDEX이 페이지/게시물
NOFOLLOW 페이지/게시물
사이트 맵에서 제외
Sitemap Priority
오버라이드 안 함 Upgrade to Pro to unlock this feature. Sitemap Frequency
오버라이드 안 함 페이지/포스트에 비활성화
패널 토글: EME Membership Limit access to EME members of
Allow access after the membership has been active for this many days (drip content): 0
Access denied message No templates defined yet!
The format of the text shown if access to the page is denied. If left empty, a default message will be shown.
패널 토글: Suggested tags Choose a provider to get suggested tags (local, yahoo or tag the net). 패널 토글: Click tags Display click tags 문서 블럭
Status & visibility 가시성 공개 공개 2020-04-01 9:17 오전 글쓴이
관리자 휴지통으로 이동
고유주소 URL 슬러그 fluid-dynamics-modelling-for-additive-manufacturing URL의 마지막 부분 고유주소에 대해 읽기(새탭에서 열기)
카테고리 TechnicalNote Slide Uncategorized 공지사항 물리모델 매뉴얼 이론 매뉴얼 새 카테고리 추가
Featured image
이미지 교체특성 이미지 제거
요약
토론
페이지 속성 패널 토글: Sidebars – Quick Select 우측 사이드바 3D 프린팅 / 적층제조 SidebarCFD-101 SidebarFLOW-3D Cast SidebarFLOW-3D SidebarFLOW-3D 기술자료 SidebarFLOW-3D 물리모델 적용사례 SidebarFLOW-3D 해석예제 SidebarFLOW-3D/MP SidebarFlowsight SidebarLaser Welding SidebarMEMS Sidebar공지사항교육안내 Sidebar구매 문의구매문의 Sidebar기술자료 Sidebar논문자료 Sidebar뉴스레터 Sidebar물리모델 매뉴얼 Sidebar바이오분야 Sidebar분야별적용사례 Sidebar수자원분야 Sidebar수처리분야 Sidebar에너지분야 Sidebar이론 매뉴얼 Sidebar자동차분야 Sidebar전용프로그램개발 Sidebar제품소개 Sidebar조선해양분야 Applications주조분야 Sidebar코팅분야 Sidebar항공분야 Sidebar해석용 컴퓨터 sidebar해석컨설팅/용역 SidebarType to Add New Sidebar 좌측 사이드바 Type to Add New Sidebar 헤더 사이드바 Type to Add New Sidebar
Note: Selected Sidebars are displayed on this 페이지 specifically.Display sidebars per 글쓴이, child page, page template etc. with the Sidebar Manager.
패널 토글: Tags (Simple Tags) Separate tags with commas
패널 토글: Simple Tags – Settings 패널 토글: Hide Featured Image? Yes No 패널 토글: 레이아웃 선택 기본 레이아웃 우측 사이드바 좌측 사이드바 사이드바 없는 전체 폭 사이드바 없는 콘텐츠 중앙 No Sidebar Content Stretched 공개하기 패널 열기
레이저 파우더 베드 퓨전 (L-PBF) 첨가제 제조에는 복잡한 물리적 공정이 필요합니다. 특히, 흡수 된 레이저 빔 에너지는 입자를 녹여 강한 유체 흐름이 표면 장력 기울기 (또는 Marangoni 전단 응력)에 의해 주로 발생하는 용융 풀을 형성합니다. 열 전달 및 유체 유동은 분말 베드 내의 분말 입자의 국부적 배열에 의해 영향을 받으며, 이는 위치에 따라 다를 수 있습니다. 매우 일시적인 유체 흐름으로 인해 용융 된 풀 표면 (자유 표면)의 형상이 끊임없이 진화하여 최종 표면 품질에 영향을 미칩니다.
Numerical modeling approach
본 연구에서는 분말 포장 특성, 공정 변수 및 용융 풀 역학이 표면 품질에 미치는 영향을 정량적으로 이해하기 위해 두 가지 모델을 순서대로 사용합니다. 첫 번째 모델은 오픈 소스 이산 요소 방법 (DEM) 코드 인 Yade를 기반으로 개발 된 분말 입자 포장 모델입니다. 입자 적층 정보 (예를 들어, 개별 입자의 위치 및 반경)를 제공한다. 이러한 정보는 FLOW-3D를 기반으로 한 3D 과도 용융 풀 모델 인 두 번째 모델에 입력됩니다. 두 모델의 세부 사항은 문헌 [1]에 나와있다. FLOW-3D를 기반으로 한 용융 풀 모델의 특징을 요약하면 다음과 같습니다.
과도 유체 흐름 시뮬레이션은 그림 1에서와 같이 1000 μm (길이), 270 μm (너비) 및 190 μm (높이) 치수의 3D 계산 영역에서 수행됩니다. 도메인은 50 μm 두께의 층 의 분말 입자를 90㎛ 두께의 기판 위에 놓았다. 도메인의 미리 알림은 처음에는 무효로 채워집니다. 분말 층 형상은 DEM 시뮬레이션의 결과를 사용하여 초기화됩니다. 총 셀 수를 줄이면서 공간 분해능을 극대화하기 위해 메쉬 크기가 기판 / 파우더 레이어 인터페이스를 향하여 기판에서 9 μm에서 3 μm까지 연속적으로 감소하는 편향 메쉬가 사용됩니다. 메쉬 크기는 파우더 레이어와 그 위의 빈 공간에서 3 μm로 일정하게 유지됩니다. 총 셀 수는 143 만입니다.
경계 조건의 경우, 가우시안 분포에 기초한 소정의 열유속이 분말 층의 상부 표면에 부과되어 X 방향을 따라 이동하는 레이저로부터의 열 입력을 나타낸다. 온도에 따른 표면 장력은 FLOW-3D에서 사용 가능한 개선 된 표면 장력 모델을 사용하여 포함됩니다. 다른 열 – 물리적 특성의 경우, FLOW-3D 데이터베이스에서 사용 가능한 IN718 합금에 대한 데이터가 사용됩니다.
Result and discussion
그림 2는 시간 = 55 μs에서 용융 풀 내의 온도 등면 및 속도 벡터의 종단면도 (즉, 레이저 이동 방향에 평행 한 단면)를 도시한다. 용융 된 풀 경계는 1608.15 K에서 등온선으로 표시되며, IN718의 액상 선 온도입니다. 이 그림의 오른쪽에 표시된 것처럼 입자는 부분적으로 용융 풀로 용융됩니다. 용융 된 풀 표면 근처에서, 용융 금속은 레이저 빔 바로 밑의 중심 위치에서 풀의 후단으로 당겨진다. 풀 표면 근처의 용융 금속의 이와 같은 역류는 풀의 후단을 향해 고비를 형성하는 동안 레이저 빔 아래에서 움푹 들어간 표면 프로파일을 생성한다. 다음에서 논의되는 바와 같이, 혹 모양은 볼 결함의 형성을 초래할 수 있습니다.
볼링(balling)은 그림 3에서와 같이 용융 풀이 불연속으로 분리되어 분리 된 섬으로 갈라질 때 발생할 수있는 결함입니다.이 그림에서 알 수 있듯이 레이저 빔 바로 아래의 용융 풀은 안정적이지 않으며 후단이 빠르게 분리됩니다 정면에서 분리 된 섬을 형성합니다. 분리는 그림 3 (c)와 같이 용융 풀의 중간에있는 보이드에서 시작된다. 이 공극은 레이저가 앞으로 계속 이동하면서 팽창하여 결국 용융 된 풀을 두 부분으로 나눕니다. 도 3 (e) 및 (f). 공극의 형성과 그 팽창은 표면 장력 구배 (Marangoni 효과)에 의해 강한 후진 유동에 의해 유발됩니다.
Summary
L-PBF에서의 열 전달 및 유체 흐름의 3D 과도 시뮬레이션은 볼 결함의 형성을 정량적으로 이해하기 위해 수행됩니다. 단순한 선형 트랙 만 시뮬레이션되었지만, 본 모델은 최종 빌드 품질의 중요한 속성 인 용융 풀 표면 프로파일 및 볼링 결함 형성을 연구 할 때 분말 레벨 시뮬레이션의 중요성을 보여줍니다.
뿐만 아니라 위의 금속 분말 소결 시뮬레이션은 금속 3D 프린팅(Metal 3D Printing) 산업의 핵심 기술이며 차후 많은 연구와 응용이 기대되는 분야가 될 것입니다.
Acknowledgements
이 자료는 수상 번호 N00014-14-1-0688하에 미해군 연구소(ONR)가 지원하는 연구과제에 기초로 작성되었습니다.
금속 3D 프린팅은 적층제조(Additive Manufacturing) 가공법이라고 불리며 일반적으로 금속 파우더 또는 와이어를 한 층씩 적층하여 제조하는 공법이다. 금속 적층제조 공법에 대한 관심은 지난 몇 년 동안 지속적으로 이루어지고 있으며 이와 관련된 연구개발도 활발히 진행되고 있다. 금속 3D 프린팅은 복잡하거나 특수한 형상을 손쉽게 설계하고 제조할 수 있는 장점을 가지고 있어 조선, 우주 항공, 자동차, 의료,기계 등 다양한 분야에서 사용되고 있다.이러한 금속 3D 프린팅은 크게 Powder Bed Fusion(PBF) 공정과 Directed Energy Deposition(DED) 공정으로 분류할 수 있다.
PBF는 금속 파우더를 소재로 하는 공정으로 파우더를 평평히 깔고, 고밀도 에너지를 가진 레이저 또는 전자빔을 지정된 영역에 조사(Irradiation)하여 파우더를 소결시키거나 용융시켜 한 층씩 적층하는 방법이다. DED는 고출력 레이저 빔을 금속 표면에 조사하면서 동시에 금속 파우더도 같이 분출되어 용융지가 실시간으로 적층되는 공정이다. 용접과 유사한 방법으로 기존 제품에 덧붙여 쌓아 올릴 수 있어 보수 작업에 활용할 수 있다. 그리고, DED 공정에서는 이종 소재의 적층이 가능하여 다양한 금속 파우더를 활용한 합금 제작이나 다른 재질을 소재를 적층할 수 있다
Powder Bed Fusion(PBF) 공정
FLOW-3D의 Weld 모듈을 이용하여 레이저 파워, 열 유속, 레이저 Spot 사이즈, 레이저 움직임과 속도, 실드 가스, 멀티 반사효과, 반사율, 증발압력 효과, 표면장력 설정 등을 고려하여 Powder에 레이저조사 조건을 설정하여 용융거동을 확인할 수 있다.
Directed Energy Deposition(DED) 공정
DED 공정 해석은 FLOW-3D의 Particle 기능을 이용한 방법으로, Base Metal에 입자들이 낙하되면서 레이저의 열유속에 의해 용융 및 적층된다. 이 방법은 입자가 떨어지는 현상을 시각적으로 확인할 수 있다.
(주)에스티아이씨앤디에서는 FLOW-3D 제품군의 사용자 교육을 지원하고 있습니다. 홈페이지에 안내되어 있는 교육 일정과 교육신청 절차를 참고하시어 교육을 받으실 수 있습니다.
FLOW-3D 분야별 교육 과정 안내
교육 과정명 : 수리 분야
댐, 하천의 여수로, 수문 등 구조물 설계 및 방류, 월류 등 흐름 검토를 하기 위한 유동 해석 방법을 소개하는 교육 과정입니다. 유입 조건(수위, 유량 등)과 유출 조건에 따른 방류량 및 유속, 압력 분포 등 유체의 흐름을 검토를 할 수 있도록 관련 예제를 통해 적절한 기능을 습득하실 수 있습니다.
교육 과정명 : 수처리 분야
정수처리 및 하수처리 공정에서 각 시설물들의 특성에 맞는 최적 운영조건 검토 및 설계 검토을 위한 유동해석 방법을 소개하는 교육 과정입니다. 취수부터 시작하여 혼화지, 분배수로, 응집지, 침전지, 여과지, 정수지, 협기조, 호기조, 소독조 등 각 공정별 유동 특성을 검토하기 위한 해석 모델을 설정하는 방법에 대해 알려드립니다.
교육 과정명 : 주조 분야
주조 분야 사용자들이 쉽게 접근할 수 있도록 각 공정별로 해석 절차 및 해석 방법을 소개하는 교육 과정입니다. 고압다이캐스팅, 저압다이캐스팅, 경동주조, 중력주조, 원심주조, 정밀주조 등 주조 공법 별 관련 예제를 통해 적절한 기능들을 습득할 수 있도록 도와 드립니다.
교육 과정명 : Micro/Bio/Nano Fluidics 분야
점성력 및 모세관력 같은 유체 표면에 작용하는 힘이 지배적인 미세 유동의 특성을 정확하게 표현할 수 있는 해석 방법에 대해 소개하는 교육 과정입니다. 열적, 전기적 물리 현상을 구현할 수 있도록 관련 예제와 함께 해석 방법을 알려드립니다.
교육 과정명 : 코팅 분야 과정
코팅 공정에 따른 코팅액의 두께, 균일도, 유동 특성 분석을 위한 해석 방법을 소개하는 교육 과정입니다. Slide coating, Dip coating, Spin coating, Curtain coating, Slot coating, Roll coating, Gravure coating 등 각 공정별 예제와 함께 적절한 기능을 습득하실 수 있도록 도와 드립니다.
교육 과정명 : 레이저 용접 분야
레이저 용접 해석을 하기 위한 물리 모델과 용접 조건들을 설정하는 방법에 대해 소개하는 교육 과정입니다. 해석을 통해 용접 공정을 최적화할 수 있도록 관련 예제와 함께 적절한 기능들을 습득할 수 있도록 도와 드립니다.
교육 과정명 : 3D프린팅 분야 과정
Powder Bed Fusion(PBF)와 Directed Energy Deposition(DED) 공정에 대한 해석 방법을 소개하는 교육 과정입니다. 파우더 적층 및 레이저 빔을 조사하면서 동시에 금속 파우더 용융지가 적층되는 공정을 해석하는 방법을 관련 예제와 함께 습득하실 수 있습니다.
교육 과정명 : 해양/항만 분야
해안, 항만, 해양 구조물에 대한 파랑의 영향 및 유체의 수위, 유속, 압력의 영향을 예측할 수 있는 해석 방법을 소개하는 과정입니다. 항주파, 슬로싱, 계류 등 해안, 해양, 에너지, 플랜트 분야 구조물 설계 및 검토에 필요한 유동해석을 하실 수 있는 방법을 알려드립니다. 각 현상에 대한 적절한 예제를 통해 기능을 습득하실 수 있습니다.
교육 과정명 : 우주/항공 분야
항공기 및 우주선의 연료 탱크와 추진체 관리장치의 내부 유동, 엔진 및 터빈 노즐 내부의 유동해석을 하실 수 있도록 관련 메뉴에 대한 설명, 설정 방법을 소개하는 과정입니다. 경계조건 설정, Mesh 방법 등 유동해석을 위한 기본적인 내용과 함께 관련 예제를 통해 기능들을 습득하실 수 있습니다.
고객 맞춤형 과정
상기 과정 이외의 경우 고객의 사업 업무 환경에 적합한 사례를 중심으로 맞춤형 교육을 실시합니다. 필요하신 부분이 있으시면 언제든지 교육 담당자에게 연락하여 협의해 주시기 바랍니다.
고객센터 및 교육 담당자
전화 : 02)2026-0450, 02)2026-0455
이메일 : flow3d@stikorea.co.kr
교육 일정 안내
교육은 매월 정해진 일정에 시행되는 정기 교육과 고객의 요청에 의해 시행되는 비정기 교육이 있습니다. 비정기 교육은 별도문의 바랍니다.
레이저 파우더 베드 퓨전 (L-PBF) 첨가제 제조에는 복잡한 물리적 공정이 필요합니다. 특히, 흡수 된 레이저 빔 에너지는 입자를 녹여 강한 유체 흐름이 표면 장력 기울기 (또는 Marangoni 전단 응력)에 의해 주로 발생하는 용융 풀을 형성합니다. 열 전달 및 유체 유동은 분말 베드 내의 분말 입자의 국부적 배열에 의해 영향을 받으며, 이는 위치에 따라 다를 수 있습니다. 매우 일시적인 유체 흐름으로 인해 용융 된 풀 표면 (자유 표면)의 형상이 끊임없이 진화하여 최종 표면 품질에 영향을 미칩니다.
Numerical modeling approach
본 연구에서는 분말 포장 특성, 공정 변수 및 용융 풀 역학이 표면 품질에 미치는 영향을 정량적으로 이해하기 위해 두 가지 모델을 순서대로 사용합니다. 첫 번째 모델은 오픈 소스 이산 요소 방법 (DEM) 코드 인 Yade를 기반으로 개발 된 분말 입자 포장 모델입니다. 입자 적층 정보 (예를 들어, 개별 입자의 위치 및 반경)를 제공한다. 이러한 정보는 FLOW-3D를 기반으로 한 3D 과도 용융 풀 모델 인 두 번째 모델에 입력됩니다. 두 모델의 세부 사항은 문헌 [1]에 나와있다. FLOW-3D를 기반으로 한 용융 풀 모델의 특징을 요약하면 다음과 같습니다.
과도 유체 흐름 시뮬레이션은 그림 1에서와 같이 1000 μm (길이), 270 μm (너비) 및 190 μm (높이) 치수의 3D 계산 영역에서 수행됩니다. 도메인은 50 μm 두께의 층 의 분말 입자를 90㎛ 두께의 기판 위에 놓았다. 도메인의 미리 알림은 처음에는 무효로 채워집니다. 분말 층 형상은 DEM 시뮬레이션의 결과를 사용하여 초기화됩니다. 총 셀 수를 줄이면서 공간 분해능을 극대화하기 위해 메쉬 크기가 기판 / 파우더 레이어 인터페이스를 향하여 기판에서 9 μm에서 3 μm까지 연속적으로 감소하는 편향 메쉬가 사용됩니다. 메쉬 크기는 파우더 레이어와 그 위의 빈 공간에서 3 μm로 일정하게 유지됩니다. 총 셀 수는 143 만입니다.
경계 조건의 경우, 가우시안 분포에 기초한 소정의 열유속이 분말 층의 상부 표면에 부과되어 X 방향을 따라 이동하는 레이저로부터의 열 입력을 나타낸다. 온도에 따른 표면 장력은 FLOW-3D에서 사용 가능한 개선 된 표면 장력 모델을 사용하여 포함됩니다. 다른 열 – 물리적 특성의 경우, FLOW-3D 데이터베이스에서 사용 가능한 IN718 합금에 대한 데이터가 사용됩니다.
약 600 마이크로 초 길이의 L-PBF의 과도 시뮬레이션은 약 40 시간의 클럭 시간이 소요되었으며 인텔 ® 제온 ® 프로세서 E5335 및 4GB RAM의 중간 정도급의 워크 스테이션에서 수행되었습니다.
Result and discussion
그림 2는 시간 = 55 μs에서 용융 풀 내의 온도 등면 및 속도 벡터의 종단면도 (즉, 레이저 이동 방향에 평행 한 단면)를 도시한다. 용융 된 풀 경계는 1608.15 K에서 등온선으로 표시되며, IN718의 액상 선 온도입니다. 이 그림의 오른쪽에 표시된 것처럼 입자는 부분적으로 용융 풀로 용융됩니다. 용융 된 풀 표면 근처에서, 용융 금속은 레이저 빔 바로 밑의 중심 위치에서 풀의 후단으로 당겨진다. 풀 표면 근처의 용융 금속의 이와 같은 역류는 풀의 후단을 향해 고비를 형성하는 동안 레이저 빔 아래에서 움푹 들어간 표면 프로파일을 생성한다. 다음에서 논의되는 바와 같이, 혹 모양은 볼 결함의 형성을 초래할 수 있습니다.
볼링(balling)은 그림 3에서와 같이 용융 풀이 불연속으로 분리되어 분리 된 섬으로 갈라질 때 발생할 수있는 결함입니다.이 그림에서 알 수 있듯이 레이저 빔 바로 아래의 용융 풀은 안정적이지 않으며 후단이 빠르게 분리됩니다 정면에서 분리 된 섬을 형성합니다. 분리는 그림 3 (c)와 같이 용융 풀의 중간에있는 보이드에서 시작된다. 이 공극은 레이저가 앞으로 계속 이동하면서 팽창하여 결국 용융 된 풀을 두 부분으로 나눕니다. 도 3 (e) 및 (f). 공극의 형성과 그 팽창은 표면 장력 구배 (Marangoni 효과)에 의해 강한 후진 유동에 의해 유발됩니다.
Summary
L-PBF에서의 열 전달 및 유체 흐름의 3D 과도 시뮬레이션은 볼 결함의 형성을 정량적으로 이해하기 위해 수행됩니다. 단순한 선형 트랙 만 시뮬레이션되었지만, 본 모델은 최종 빌드 품질의 중요한 속성 인 용융 풀 표면 프로파일 및 볼링 결함 형성을 연구 할 때 분말 레벨 시뮬레이션의 중요성을 보여줍니다.
뿐만 아니라 위의 금속 분말 소결 시뮬레이션은 금속 3D 프린팅(Metal 3D Printing) 산업의 핵심 기술이며 차후 많은 연구와 응용이 기대되는 분야가 될 것입니다.
Acknowledgements
이 자료는 수상 번호 N00014-14-1-0688하에 미해군 연구소(ONR)가 지원하는 연구과제에 기초로 작성되었습니다.
적층 가공법은 3D프린팅이라고도 하며, 일반적으로 분말 또는 와이어를 층별로 적층제조하는 방법입니다. 금속기반 적층제조공정에 대한 관심이 지난 몇년간 크게 높아졌습니다. 오늘날 사용되는 3개의 주요 금속 적층 제조 공정은 파우더 베드 융접(PBF), 직접 에너지 증착(DED) 및 바인더 분사 공정입니다. FLOW-3D는 이러한 각 프로세스에 대해 고유한 시뮬레이션 통찰력을 제공합니다
파우더 베드 융합 및 직접 에너지 증착 공정에서는 레이저나 전자 빔을 열원으로 사용할 수 있습니다. 두 경우 모두 PBF의 분말 형태와 DED공정의 분말 또는 와이어 형태의 금속은 완전히 용해되고 함께 융합되어 층별 부품을 형성합니다. 그러나 바인더 분사에서, 결합제 역할을 하는 수지는 금속 분말에 선택적으로 침전되어 층별로 부품을 형성합니다. 이들 부품은 더 나은 밀도를 얻기 위해 중앙에 배치됩니다.
FLOW-3D의 자유 표면 추적 알고리즘과 물리적 모델은 이러한 각 프로세스를 매우 정확하게 시뮬레이션할 수 있습니다. 레이저 파우더 베드 퓨전(L-LPF)모델링 단계에 대해서는 여기에서 자세히 설명합니다. DED 및 바인더 분사 프로세스에 대한 개념 증명 시뮬레이션도 몇 가지 보여줍니다.
Laser-powder bed fusion processes
L-PBF 공정은 유체 유동, 열 전달, 표면 장력, 상 변화 및 응고와 같은 복잡한 다중 물리 현상을 포함하며, 이는 공정 및 궁극적으로 품질에 영향을 미칩니다. FLOW-3D의 물리적 모델은 질량, 운동량 및 에너지 보존 방정식을 동시에 해결하면서, 입자 크기 분포 및 충진 분율을 고려하여 메소 스케일에서 용융 풀 현상을 시뮬레이션합니다.
FLOW-3D의 추가 모듈인 DEM및 WELD는 전체 파우더 베드 융접 프로세스를 시뮬레이션하는데 사용됩니다. L-PBF 공정의 다양한 단계는 분말 베드 적층, 분말 용융 및 응고 및이어서 이전에 응고 된 층 상에 새로운 분말을 놓고 새로운 층을 이전 층에 다시 융해 및 융합시키는 단계입니다. FLOW-3D는 이러한 각 단계를 시뮬레이션하는 데 사용할 수 있습니다.
Powder bed laying process
FLOW-3D와 통합된 DEM모듈을 사용하면 다음과 같이 입자의 랜덤화된 분포를 삭제하고 포장하여 파우더 베드 배치 프로세스를 아래 영상처럼 시뮬레이션 할 수 있습니다.
One way to achieve different powder bed compactions is to choose different particle size distributions while laying the bed. As seen below, there are three different sized particle size distributions, which result in varying powder bed compactions with Case 2 giving the highest compaction.
입자-입자 상호 작용, 유체-입자 결합 및 입자 이동 객체 상호 작용은 DEM 모듈을 사용하여 자세히 분석할 수 있습니다. 또한 입자 간 힘을 특정하여 분말을 넓게 펴서 뿌리는 현상에 대한 응용을 보다 정확하게 연구할 수도 있습니다.
FLOW-3D 시뮬레이션은 DEM 모델을 사용하여, 회전하는 원통형 롤러로 인해 퍼지는 분말을 해석한 결과입니다. 영상의 시작 부분에서는 분말 저장소가 아래로 이동하는 반면, 빌드 플랫폼은 위쪽으로 이동합니다. 그 직후 롤러는 초기 위치에 따라 컬러 분말 입자를 빌드 플랫폼으로 분산시켜 다음 층의 용해 및 제작을 준비합니다. 그러한 시뮬레이션은 탱크에서 빌드 플랫폼으로 전달되는 분말 입자의 바람직한 크기에 대해 예측할 수 있습니다.
Powder bed melting
파우더 베드를 배치한 후에는 FLOW-3D 에 레이저 빔 프로세스 매개 변수를 지정하여 고 밀도의 용융지 시뮬레이션을 수행할 수 있습니다. 온도, 속도, 고상 분율, 온도 구배 및 응고 속도에 대한 그림을 자세히 분석할 수 있습니다
Melt pool analysis of the powder bed under a laser power output of 200W, scan speed of 3.0m/s and a spot radius of 100μm.
용해 풀이 굳으면 FLOW-3D 압력 및 온도 데이터를 Abaqus 또는 MSC Nastran과 같은 FEA 도구로 데이터를 가져와 응력 등고선 및 변위 프로필을 분석할 수 있습니다.
Multi-layer additive manufacturing
첫번째 용해 층이 굳으면 두번째 입자 층이 응고된 베드에 쌓입니다. 새로운 분말 입자 층에 레이저 프로세스 파라미터를 지정함으로써, 용해지 시뮬레이션을 다시 수행할 수 있습니다. 이 과정을 여러 번 반복하여 연속적으로 형성된 층 사이의 결합을 평가할 수 있습니다.
Binder jetting
바인더 분사 시뮬레이션은 모세관 힘의 영향을 받는 파우더 베드의 바인더 확산 및 침투에 대한 통찰력을 제공합니다. 공정 매개 변수와 재료 특성은 증착 및 확산 공정에 직접적인 영향을 미친다.
Direct energy deposition
FLOW-3D의 Particle 모델을 사용하여 직접 에너지 증착 공정을 시뮬레이션 할 수도 있습니다. 고체 기판에 분말 주입 속도와 열유속 입사를 지정함으로써, 고체 입자는 용융지를 통해 질량, 추진력 및 에너지를 추가할 수 있습니다. 다음 동영상에서는 용융지을 통해 고체 금속 입자가 주입되고 이어서 기판에 용융지를 응고시키는 과정이 관찰됩니다.
적층 제조법은 3D프린팅이라고도 하며, 일반적으로 분말 또는 와이어를 층별로 적층제조하는 방법입니다. 금속기반 적층제조공정에 대한 관심이 지난 몇년간 크게 높아졌습니다. 오늘날 사용되는 3개의 주요 금속 적층 제조 공정은 파우더 베드 융접(PBF), 직접 에너지 증착(DED) 및 바인더 분사 공정입니다. FLOW-3D는 이러한 각 프로세스에 대해 높은 정확도의 시뮬레이션 기능을 제공합니다
파우더 베드 융합 및 직접 에너지 증착 공정에서는 레이저나 전자 빔을 열원으로 사용할 수 있습니다. 두 경우 모두 PBF의 분말 형태와 DED공정의 분말 또는 와이어 형태의 금속은 완전히 용해되고 함께 융합되어 층별 부품을 형성합니다. 그러나, 결합제 분사에서, 결합제로서 작용하는 수지는 금속 분말 위에 선택적으로 증착되어 층별로 부품을 형성합니다.그런 다음 이러한 부품을 소결하여 밀도를 높이게 됩니다.
FLOW-3D의 자유 표면 추적 알고리즘과 물리적 모델은 이러한 각 프로세스를 매우 정확하게 시뮬레이션할 수 있습니다. 레이저 파우더 베드 퓨전(L-LPF)모델링 단계에 대해서는 여기에서 자세히 설명합니다. DED 및 바인더 분사 프로세스에 대한 개념 증명 시뮬레이션도 몇 가지 보여줍니다.
Laser-powder bed fusion processes
L-PBF 공정은 유체 유동, 열 전달, 표면 장력, 상 변화 및 응고와 같은 복잡한 다중 물리 현상을 포함하며, 이는 공정 및 궁극적으로 품질에 영향을 미칩니다. FLOW-3D의 물리적 모델은 질량, 운동량 및 에너지 보존 방정식을 동시에 해결하면서, 입자 크기 분포 및 충진 분율을 고려하여 메소 스케일에서 용융 풀 현상을 시뮬레이션합니다.
FLOW-3D의 추가 모듈인 DEM및 WELD는 전체 파우더 베드 융접 프로세스를 시뮬레이션하는데 사용됩니다. L-PBF 공정의 다양한 단계는 분말 베드 적층, 분말 용융 및 응고 및이어서 이전에 응고 된 층 상에 새로운 분말을 놓고 새로운 층을 이전 층에 다시 융해 및 융합시키는 단계입니다. FLOW-3D는 이러한 각 단계를 시뮬레이션하는 데 사용할 수 있습니다.
Powder bed laying process
FLOW-3D와 통합된 DEM모듈을 사용하면 다음과 같이 입자의 랜덤화된 분포를 삭제하고 포장하여 파우더 베드 배치 프로세스를 아래 영상처럼 시뮬레이션 할 수 있습니다.
One way to achieve different powder bed compactions is to choose different particle size distributions while laying the bed. As seen below, there are three different sized particle size distributions, which result in varying powder bed compactions with Case 2 giving the highest compaction.
입자-입자 상호 작용, 유체-입자 결합 및 입자 이동 객체 상호 작용은 DEM 모듈을 사용하여 자세히 분석할 수 있습니다. 또한 입자 간 힘을 특정하여 분말을 넓게 펴서 뿌리는 현상에 대한 응용을 보다 정확하게 연구할 수도 있습니다.
FLOW-3D 시뮬레이션은 DEM 모델을 사용하여, 회전하는 원통형 롤러로 인해 퍼지는 분말을 해석한 결과입니다. 비디오의 시작 부분에서는 분말 저장소가 아래로 이동하는 반면, 빌드 플랫폼은 위쪽으로 이동합니다. 그 직후 롤러는 초기 위치에 따라 컬러 분말 입자를 빌드 플랫폼으로 분산시켜 다음 층의 용해 및 제작을 준비합니다. 그러한 시뮬레이션은 탱크에서 빌드 플랫폼으로 전달되는 분말 입자의 바람직한 크기에 대한 예측할 수 있습니다.
Powder bed melting
파우더 베드를 배치한 후에는 FLOW-3D WELD에 레이저 빔 프로세스 매개 변수를 지정하여 고 밀도의 용융 풀 시뮬레이션을 수행할 수 있습니다. 온도, 속도, 고상 분율, 온도 구배 및 응고 속도에 대한 그림을 자세히 분석할 수 있습니다
Melt pool analysis of the powder bed under a laser power output of 200W, scan speed of 3.0m/s and a spot radius of 100μm.
용해 풀이 굳으면 FLOW-3D 압력 및 온도 데이터를 Abaqus 또는 MSC Nastran과 같은 FEA 도구로 데이터를 가져와 응력 등고선 및 변위 프로필을 분석할 수 있습니다.
Multi-layer additive manufacturing
첫번째 용해 층이 굳으면 두번째 입자 층이 응고된 베드에 쌓입니다. 새로운 분말 입자 층에 레이저 프로세스 파라미터를 지정함으로써, 용해 풀 시뮬레이션을 다시 수행할 수 있습니다. 이 과정을 여러 번 반복하여 연속적으로 형성된 층 사이의 결합을 평가할 수 있습니다.
Binder jetting
바인더 분사 시뮬레이션은 모세관 힘의 영향을 받는 파우더 베드의 바인더 확산 및 침투에 대한 통찰력을 제공합니다. 공정 매개 변수와 재료 특성은 증착 및 확산 공정에 직접적인 영향을 미친다.
Direct energy deposition
FLOW-3D의 Particle 모델을 사용하여 직접 에너지 축적 프로세스를 시뮬레이션 할 수도 있습니다. 고체 기판에 분말 주입 속도와 열유속 입사를 지정함으로써, 고체 입자는 용융풀을 통해 질량, 추진력 및 에너지를 추가할 수 있습니다. 다음 동영상에서는 용융풀을 통해 고체 금속 입자가 주입되고 이어서 기판에 용융풀응 응고시키는 과정이 관찰됩니다.
C. M. LadeiroDepartment of Metallurgical and Materials Engineering, Faculdade de Engenharia, Universidade do Porto, Rua Dr. RobertoFrias, 4200-465 PORTO, Portugal ...
바인더 제트 3D 프린팅 중 계면 유체-입자 상호 작용에 대한 CFD-DEM 결합 시뮬레이션 Joshua J. Wagner, C. Fred Higgs III https://doi.org/10.1016/j.cma.2024.116747 Abstract The coupled ...
STI C&D 에서 공급하는 CFD 프로그램은 미국 Flow Science 에서 개발된 FLOW-3D solver 를 기반으로 한 매우 강력하고 정확한 열유동 수치해석 프로그램 입니다. 귀하의 업무에 적합한 제품군을 찾고자 하시면 당사의 솔루션팀으로 문의 주시기 바랍니다.
FLOW-3D 는 유체의 동적 거동을 연구하는 개발 및 설계 엔지니어에게 꼭 필요한 유동 시뮬레이션 솔루션을 제공합니다. FLOW-3D는 1, 2, 3차원의 자유 표면 해석, 시간에 따른 유체의 유동해석, 제한된 유체의 흐름, 정상 상태의 문제들을 완벽하게 해결 할 수 있습니다.
FLOW-3D HYDRO는 토목 및 환경 엔지니어링 산업을 위한 완벽한 3D CFD 모델링 솔루션입니다. FLOW-3D HYDRO는 토목 또는 환경 엔지니어의 요구에 맞는 확장된 교육 자료를 제공합니다. 업계 최고의 FLOW-3D 솔버 엔진으로 구동되는 FLOW-3D HYDRO는 수처리, 광산 광미, 다상 흐름 및 천수(shallow water) 모델에 대한 지속적인 개발과 함께 사용자에게 탁월한 시뮬레이션 기능을 제공합니다.
FLOW-3D/CAST 는 금속 주조 공정 시뮬레이션을 위해 특별히 설계된 FLOW-3D의 특별 버전입니다. 본 제품은 FLOW-3D의 강력한 해석기능을 주조분야 설계자가 쉽게 사용할 수 있는 쉬운 인터페이스를 제공합니다.
FLOW-3D HPC 는 흔히 슈퍼컴퓨터 또는 클러스터 컴퓨터를 이용하여 고성능 컴퓨팅(HPC, High-Performance Computing)을 할 수 있는 제품으로 대규모 또는 장시간 계산이 필요한 문제를 효과적으로 해결할 수 있도록 뛰어난 성능을 제공합니다. FLOW-3D HPC 는 초대형 컴퓨팅 시스템부터 조립 클러스터까지 쉽게 고성능 컴퓨팅 클러스터를 활용할 수 있습니다.
FLOW Weld 는 용접 해석에 필요한 모델을 FLOW-3D 에 추가하는 추가 모듈입니다. FLOW-3D 표면 장력 자유 표면 분석, 용융 · 응고 · 증발 상 변화 모델 등의 기본 기능을 응용하여 각종 용접 현상을 분석 할 수 있습니다.
FLOW-3D AM 은 레이저 파우더 베드 융합 (L-PBF), 바인더 제트 및 DED (Directed Energy Deposition)와 같은 적층 제조 공정 ( additive manufacturing )을 시뮬레이션하고 분석하는 CFD 소프트웨어입니다. FLOW-3D AM 의 다중 물리 기능은 공정 매개 변수의 분석 및 최적화를 위해 분말 확산 및 압축, 용융 풀 역학, L-PBF 및 DED에 대한 다공성 형성, 바인더 분사 공정을위한 수지 침투 및 확산에 대한 매우 정확한 시뮬레이션을 제공합니다.
FLOW-3D 는 CFD 응용 분야에서 가장 까다로운 자유 표면 유동 시뮬레이션을 해결하기 위해 Fortune 500 대 기업에서부터 소규모 가족 소유 기업에 이르기까지 전 세계적으로 R&D 및 생산 환경에서 사용되고 있습니다. 당사에서 제공하는 FLOW-3D로 주요 산업에서 수행 할 수 있는 사례를 살펴 보시려면 우측 메뉴의 관련 분야를 살펴보시면 도움이 될 수 있습니다.
FLOW-3D는 자유 표면 수치해석 분야에서 정확성과 사용 편의성으로 널리 알려져 있습니다. 유체의 유동 및 열전달 해석이 필요한 수리, 주조, 조선/해양, 항공/우주, 자동차, MEMS 등 다양한 분야에서 사용되고 있습니다. 예를 들면 금속 주조 분야에서 충진과정을 추적하는 것은 주조 결함과 주조되는 부품의 상태 및 정밀도를 예측하는 데 매우 중요합니다. 이 외에도 각 산업 분야에서 FLOW-3D를 적용한 사례들을 확인해 보시기 바랍니다.
수자원 공학 분야 : spillways, 댐 붕괴, 홍수 영향, 쓰나미, 수처리 및 하수 시스템을 통한 물 흐름을 추적하고 분석하는 분야에서 다양하게 활용되고 있습니다.
항공 우주 분야 : FLOW-3D 를 사용하여 항공기의 연료 탱크, 특히 우주선의 연료 유출을 정확하게 예측합니다.
적층 제조 분야 : FLOW-3D 는 적층 제조분야에서 현업에서 사용할 수 있는 유일한 CFD소프트웨어 중 하나로, 파우더 베드 퓨전과 같은 다양한 정교한 적층 제조 프로세스를 상세한 수준으로 모델링 할 수 있습니다.
레이저 용접 분야 : FLOW-3D는 용융 풀 역학분야에서 용접 이음매의 일관성과 강도에 중요한 역할을 하는 레이저 용접에 사용됩니다.
자동차 산업 분야 : FLOW-3D는 변속기 및 기어 모델링, 냉각 및 연료 시스템에서 가장 까다로운 열 유동 해석 분야의 문제 해결에 많이 사용되고 있습니다.
소비자 제품 개발 분야 : FLOW-3D는 샴푸 및 세제 병 채우기와 같은 소비자 제품 개발에 널리 사용됩니다 .
미세 유체 분야 : FLOW-3D는 현재 3D 프린팅으로 제품을 개발하고 있는 잉크젯 프린팅 산업에서 연구 개발부문에 압도적으로 사용되고 있습니다.
생물 의학 응용 분야 : 자유 표면 분석 필요성이 발생할 때마다, FLOW-3D 는 이러한 시스템을 시뮬레이션하는데 탁월합니다.
코팅분야 연구개발 : FLOW-3D는 코팅분야 제품 연구개발에 매우 자주 사용되고 있습니다.