Thermocapillary Actuation

Thermocapillary Actuation

표면 장력의 온도 의존성은 유체 방울을 패턴 있는 표면 위로 전달하는 데 사용될 수 있습니다. 표면은 유체 방울이 친수성-수소성 인터페이스에 의해 형성된 채널을 따르도록 제한되도록 친수성 또는 친수성 접촉 각도로 패턴화됩니다. 또한 프로그램 가능한 방식으로 가열된 마이크로 히터의 배열은 열전압 작동을 유발하여 유체 방울을 뜨거운 영역에서 차가운 지역으로 유도합니다. 아래 이미지는 문제 설정의 상단 및 단면 뷰(Anton A)를 보여줍니다. Darhuber 외.) 다음에 Flow-3D를 설정합니다.

Liquid droplet moving along hydrophilic microstripe
Top-view of a liquid droplet moving along a hydrophilic microstripe. The array of Ti-resistors (shown in light gray) beneath the hydrophilic stripes locally heat the droplet thereby modifying the surface tension and propelling the liquid toward the colder regions of the device surface. The dark gray stripes represent the leads and contacts (Au) for the heating resistors.
Cross sectional view of device
Cross-sectional view of a portion of the device containing two micro-heaters and an overlying droplet.

더 차가운 표면 온도 영역은 인접한 따뜻한 지점보다 더 높은 표면 장력을 유지하여 액체를 당기는 접선 표면 힘을가합니다. 부분적 습윤 (접촉각> 0) 표면은 전체 습윤 표면 (접촉각 = 0)에 비해 부피 손실이 적은 유체 수송을 허용하기 때문에 바람직한 옵션입니다.

FLOW-3D setup of three microheaters

Top view of the setup in FLOW-3D showing three microheaters in pink, yellow and blue respectively. The central hydrophilic strip is shown in black with a fluid (water) droplet in sky blue.

아래 애니메이션은 완전히 젖은 표면과 부분적으로 젖은 표면의 비교를 보여줍니다. 예상대로 완전히 젖은 표면은 부분적으로 젖은 표면보다 액적을 더 평평하게 (그리고 더 많이 퍼지게) 만듭니다. 히터가 한 번에 하나씩 활성화되면 물방울이 더 차가운 영역으로 이동됩니다. 더 많은 유체가 남겨질수록 시뮬레이션이 끝날 때까지 완전히 젖은 표면은 더 많은 유체 볼륨을 잃는 것을 볼 수 있습니다. 따라서 부분적으로 젖은 표면은 유체 손실을 줄이기위한 더 바람직한 옵션입니다. 두 경우 모두 소수성 표면으로 둘러싸인 중앙 친수성 스트립으로 인해 물방울이 중앙에 머물러야합니다.

Animation of the results post-processed in FlowSight.

References

Anton A. Darhuber, Joseph P. Valentino, Sandra M. Trian and Sigurd Wagner, Thermocapillary Actuation of Droplets on Chemically Patterned Surfaces by Programmable Microheater Arrays, Journal of Microelectrochemical Systems, Vol. 12, No. 6, December 2003

Lab-on-a-chip

다양한 표면 장력을 사용하는 패턴화된 표면

마이크로 채널의 패턴화된 표면은 액체 사이의 실제 물리적 벽 없이도 여러 액체가 나란히 흐르는 특정 경로를 따라 한 저장소에서 다른 저장소로 액체를 운반하는 데 사용할 수 있습니다. 패턴화된 표면은 랩 온어 칩 (lab-on-a-chip), 바이오어세이, 마이크로 리액터 및 화학적 및 생물학적 감지를 통해 유체를 운반하는 데 사용됩니다. 이 경우 표면 장력은 패턴화된 흐름을 생성하기 위해 마이크로 채널의 유체 흐름을 조작하는데 사용됩니다. 고체 표면에서 유체의 친수성 또는 소수성 거동을 이용하여 마이크로 채널을 통한 여러 유체의 움직임을 제어합니다. 마이크로 채널 내부의 유체 흐름은 층상이므로 여러 유체 흐름 (이 경우 2 개)이 난류 혼합없이 나란히 흐를 수 있습니다. 유체 흐름의 측면에는 물리적 벽이 없기 때문에 흐름은 소위 가상 벽에 의해 제한됩니다. 이 벽은 기본적으로 두 유체 사이의 친수성 경계입니다.

Patterned surfaces in micro channels
Experimental results showing the three phases – A, B and C (left to right), Bin Zhao et al.

위 그림은 마이크로 채널의 실험을 보여줍니다. 중앙 수평 채널의 중간 스트립은 친수성이지만 상부 및 하부 수직 채널과 함께 나머지 채널은 소수성의 정도가 다릅니다. 소수성은 접촉각의 몇도 정도만 다릅니다. 상부 채널의 접촉각은 118o이고 하부 채널의 접촉각은 112o입니다. 그러나 접촉각의 작은 차이는 유체가 이러한 영역으로 흐르기 위해 상당히 다른 압력을 필요로합니다.

Numerical Simulation

처음에는 모든 채널이 다른 유체(투명)로 채워집니다. 분홍색 액체가 수평 채널로 밀리면 중앙 영역(단계 A)의 친수성 경로를 사용합니다. 압력이 증가하면 유체는 하부 친수성-수성 장벽을 깨고 하부 친수성 영역(단계 B)으로 흐르기 시작합니다. 압력을 더 높이면 마침내 유체가 상부 친수성-수소성 장벽을 부수고 상부 영역에서도 흐르기 시작합니다(Phase C).

Numerical results - patterned surfaces using varied surface tension
Numerical results showing the three phases – A, B and C.

위의 수치 결과는 둘 사이에 중요한 차이가 있다는 점을 고려할 때 실험에서 패턴화된 표면 연구의 전반적인 아이디어와 합리적인 비교 가능성을 보여줍니다. 위에 표시된 수치 결과는 과도 상태 (압력이 지속적으로 증가)이므로 유체 경계가 실험 결과와 정확히 유사하지 않습니다. 마찬가지로 유체 특성은 실험에 사용 된 특성과 정확히 유사하지 않습니다. 그럼에도 불구하고 유체 1은 실험에서와 같이 압력이 증가함에 따라 단계 A, B 및 C를 통과합니다. 단계 B에서 투명한 유체는 계속해서 위쪽 채널을 통해 흐르지 만 분홍색 유체만 아래쪽 영역으로 흐릅니다. 이것은 실험과 일치합니다. 흥미로운 것은 C 단계에서 나타난 기포 형성입니다. C 단계에서 기포 형성과 같은 흥미로운 물리학에 대한 계시와 연구는 미세 유체 장치의 설계 및 제작 과정에 중요 할 수 있습니다.

FLOW-3D Results

아래 애니메이션은 위의 실험에 대한 FLOW-3D의 시뮬레이션 결과를 보여줍니다. 유체 1 (하늘색)은 실험의 분홍색 유체와 동일합니다. 처음에는 전체 도메인이 Fluid 2 (투명 유체)로 채워집니다. 압력은 단계적으로 증가하고 시뮬레이션이 진행됨에 따라 세 단계를 모두 볼 수 있습니다.

Evolution of fluid flow with increasing pressure in patterned micro channels created by varying contact angles.

Ref: Bin Zhao, Jeffrey S. Moore, David J. Beebe, Surface-Directed Liquid Flow Inside Microchannels, Science 291, 1023 (2001)

Learn more about the power and versatility of modeling microfluidic applications with FLOW-3D

Lab-on-a-chip – Thermocapillary actuation (열 모세관 작동)

Thermocapillary actuation (열 모세관 작동)

  • 열 효과를 사용한 랩온어칩의 미세 액체의 길
    – 온도에 의존하는 표면 장력
    – 외부의 기계적인 힘이 필요하지 않음
    – 프로그래밍이 가능한 마이크로 히터 어레이를 통해 열 효과 추가
  • 유체의 고유한 습윤성으로 인해 유체 손실이 발생
    – 열 모세관 작동 외에도 패턴화 된 (친수성 또는 소수성) 표면을 배치하여 손실을 최소화 할 수 있음

공간의 다양한 표면 장력

  • 차가운 유체에서 표면 장력이 높기 때문에 공간의 변화가 발생함
    – 높은 표면 장력으로 유체를 함께 유지
    – 유체가 따뜻한 곳에서 차가운 곳으로 당겨짐
    – 유체의 움직임은 다음의 식을 통해 알 수 있음

FLOW-3D에서의 시뮬레이션

  • 미세 액체는 인접 구역의 온도에 따라 움직임 (소수성과 친수성)