Fig. 1. Model geometry with the computational domain, extrusion nozzle, toolpath, and boundary conditions. The model is presented while printing the fifth layer.

재료 압출 적층 제조에서 증착된 층의 안정성 및 변형

Md Tusher Mollah Raphaël 사령관 Marcin P. Serdeczny David B. Pedersen Jon Spangenberg덴마크 공과 대학 기계 공학과, Kgs. 덴마크 링비

2020년 12월 22일 접수, 2021년 5월 1일 수정, 2021년 7월 15일 수락, 2021년 7월 21일 온라인 사용 가능, 기록 버전 2021년 8월 17일 .

Abstract

이 문서는 재료 압출 적층 제조 에서 여러 레이어를 인쇄하는 동안 증착 흐름의 전산 유체 역학 시뮬레이션 을 제공합니다 개발된 모델은 증착된 레이어의 형태를 예측하고 점소성 재료 를 인쇄하는 동안 레이어 변형을 캡처합니다 . 물리학은 일반화된 뉴턴 유체 로 공식화된 Bingham 구성 모델의 연속성 및 운동량 방정식에 의해 제어됩니다. . 증착된 층의 단면 모양이 예측되고 재료의 다양한 구성 매개변수에 대해 층의 변형이 연구됩니다. 층의 변형은 인쇄물의 정수압과 압출시 압출압력으로 인한 것임을 알 수 있다. 시뮬레이션에 따르면 항복 응력이 높을수록 변형이 적은 인쇄물이 생성되는 반면 플라스틱 점도 가 높을수록 증착된 레이어에서변형이 커 집니다 . 또한, 인쇄 속도, 압출 속도 의 영향, 층 높이 및 인쇄된 층의 변형에 대한 노즐 직경을 조사합니다. 마지막으로, 이 모델은 후속 인쇄된 레이어의 정수압 및 압출 압력을 지원하기 위해 증착 후 점소성 재료가 요구하는 항복 응력의 필요한 증가에 대한 보수적인 추정치를 제공합니다.

This paper presents computational fluid dynamics simulations of the deposition flow during printing of multiple layers in material extrusion additive manufacturing. The developed model predicts the morphology of the deposited layers and captures the layer deformations during the printing of viscoplastic materials. The physics is governed by the continuity and momentum equations with the Bingham constitutive model, formulated as a generalized Newtonian fluid. The cross-sectional shapes of the deposited layers are predicted, and the deformation of layers is studied for different constitutive parameters of the material. It is shown that the deformation of layers is due to the hydrostatic pressure of the printed material, as well as the extrusion pressure during the extrusion. The simulations show that a higher yield stress results in prints with less deformations, while a higher plastic viscosity leads to larger deformations in the deposited layers. Moreover, the influence of the printing speed, extrusion speed, layer height, and nozzle diameter on the deformation of the printed layers is investigated. Finally, the model provides a conservative estimate of the required increase in yield stress that a viscoplastic material demands after deposition in order to support the hydrostatic and extrusion pressure of the subsequently printed layers.

Fig. 1. Model geometry with the computational domain, extrusion nozzle, toolpath, and boundary conditions. The model is presented while printing the fifth layer.
Fig. 1. Model geometry with the computational domain, extrusion nozzle, toolpath, and boundary conditions. The model is presented while printing the fifth layer.

키워드

점성 플라스틱 재료, 재료 압출 적층 제조(MEX-AM), 다층 증착, 전산유체역학(CFD), 변형 제어
Viscoplastic Materials, Material Extrusion Additive Manufacturing (MEX-AM), Multiple-Layers Deposition, Computational Fluid Dynamics (CFD), Deformation Control

Introduction

Three-dimensional printing of viscoplastic materials has grown in popularity over the recent years, due to the success of Material Extrusion Additive Manufacturing (MEX-AM) [1]. Viscoplastic materials, such as ceramic pastes [2,3], hydrogels [4], thermosets [5], and concrete [6], behave like solids when the applied load is below their yield stress, and like a fluid when the applied load exceeds their yield stress [7]. Viscoplastic materials are typically used in MEX-AM techniques such as Robocasting [8], and 3D concrete printing [9,10]. The differences between these technologies lie in the processing of the material before the extrusion and in the printing scale (from microscale to big area additive manufacturing). In these extrusion-based technologies, the structure is fabricated in a layer-by-layer approach onto a solid surface/support [11, 12]. During the process, the material is typically deposited on top of the previously printed layers that may be already solidified (wet-on-dry printing) or still deformable (wet-on-wet printing) [1]. In wet-on-wet printing, control over the deformation of layers is important for the stability and geometrical accuracy of the prints. If the material is too liquid after the deposition, it cannot support the pressure of the subsequently deposited layers. On the other hand, the material flowability is a necessity during extrusion through the nozzle. Several experimental studies have been performed to analyze the physics of the extrusion and deposition of viscoplastic materials, as reviewed in Refs. [13–16]. The experimental measurements can be supplemented with Computational Fluid Dynamics (CFD) simulations to gain a more complete picture of MEX-AM. A review of the CFD studies within the material processing and deposition in 3D concrete printing was presented by Roussel et al. [17]. Wolfs et al. [18] predicted numerically the failure-deformation of a cylindrical structure due to the self-weight by calculating the stiffness and strength of the individual layers. It was found that the deformations can take place in all layers, however the most critical deformation occurs in the bottom layer. Comminal et al. [19,20] presented three-dimensional simulations of the material deposition in MEX-AM, where the fluid was approximated as Newtonian. Subsequently, the model was experimentally validated in Ref. [21] for polymer-based MEX-AM, and extended to simulate the deposition of multiple layers in Ref. [22], where the previously printed material was assumed solid. Xia et al. [23] simulated the influence of the viscoelastic effects on the shape of deposited layers in MEX-AM. A numerical model for simulating the deposition of a viscoplastic material was recently presented and experimentally validated in Refs. [24] and [25]. These studies focused on predicting the cross-sectional shape of a single printed layer for different processing conditions (relative printing speed, and layer height). Despite these research efforts, a limited number of studies have focused on investigating the material deformations in wet-on-wet printing when multiple layers are deposited on top of each other. This paper presents CFD simulations of the extrusion-deposition flow of a viscoplastic material for several subsequent layers (viz. three- and five-layers). The material is continuously printed one layer over another on a fixed solid surface. The rheology of the viscoplastic material is approximated by the Bingham constitutive equation that is formulated using the Generalized Newtonian Fluid (GNF) model. The CFD model is used to predict the cross-sectional shapes of the layers and their deformations while printing the next layers on top. Moreover, the simulations are used to quantify the extrusion pressure applied by the deposited material on the substrate, and the previously printed layers. Numerically, it is investigated how the process parameters (i.e., the extrusion speed, printing speed, nozzle diameter, and layer height) and the material rheology affect the deformations of the deposited layers. Section 2 describes the methodology of the study. Section 3 presents and discusses the results. The study is summarized and concluded in Section 4.

References

[1] R.A. Buswell, W.R. Leal De Silva, S.Z. Jones, J. Dirrenberger, 3D printing using
concrete extrusion: a roadmap for research, Cem. Concr. Res. 112 (2018) 37–49.
[2] Z. Chen, Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, Y. He, 3D printing of
ceramics: a review, J. Eur. Ceram. Soc. 39 (4) (2019) 661–687.
[3] A. Bellini, L. Shor, S.I. Guceri, New developments in fused deposition modeling of
ceramics, Rapid Prototyp. J. 11 (4) (2005) 214–220.
[4] S. Aktas, D.M. Kalyon, B.M. Marín-Santib´
anez, ˜ J. P´erez-Gonzalez, ´ Shear viscosity
and wall slip behavior of a viscoplastic hydrogel, J. Rheol. 58 (2) (2014) 513–535.
[5] J. Lindahl, A. Hassen, S. Romberg, B. Hedger, P. Hedger Jr., M. Walch, T. Deluca,
W. Morrison, P. Kim, A. Roschli, D. Nuttall, Large-scale Additive Manufacturing
with Reactive Polymers, Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United
States), 2018.
[6] V.N. Nerella, V. Mechtcherine, Studying the printability of fresh concrete for
formwork-free Concrete onsite 3D Printing Technology (CONPrint3D), 3D Concr.
Print. Technol. (2019) 333–347.
[7] C. Tiu, J. Guo, P.H.T. Uhlherr, Yielding behaviour of viscoplastic materials, J. Ind.
Eng. Chem. 12 (5) (2006) 653–662.
[8] B. Dietemann, F. Bosna, M. Lorenz, N. Travitzky, H. Kruggel-Emden, T. Kraft,
C. Bierwisch, Modeling robocasting with smoothed particle hydrodynamics:
printing gapspanning filaments, Addit. Manuf. 36 (2020), 101488.
[9] B. Khoshnevis, R. Russell, H. Kwon, S. Bukkapatnam, Contour crafting – a layered
fabrication, Spec. Issue IEEE Robot. Autom. Mag. 8 (3) (2001) 33–42.
[10] D. Asprone, F. Auricchio, C. Menna, V. Mercuri, 3D printing of reinforced concrete
elements: technology and design approach, Constr. Build. Mater. 165 (2018)
218–231.
[11] J. Jiang, Y. Ma, Path planning strategies to optimize accuracy, quality, build time
and material use in additive manufacturing: a review, Micromachines 11 (7)
(2020) 633.
[12] J. Jiang, A novel fabrication strategy for additive manufacturing processes,
J. Clean. Prod. 272 (2020), 122916.
[13] F. Bos, R. Wolfs, Z. Ahmed, T. Salet, Additive manufacturing of concrete in
construction: potentials and challenges, Virtual Phys. Prototyp. 11 (3) (2016)
209–225.
[14] P. Wu, J. Wang, X. Wang, A critical review of the use of 3-D printing in the
construction industry, Autom. Constr. 68 (2016) 21–31.
[15] T.D. Ngo, A. Kashani, G. Imbalzano, K.T. Nguyen, D. Hui, Additive manufacturing
(3D printing): a review of materials, methods, applications and challenges,
Compos. Part B: Eng. 143 (2018) 172–196.
[16] M. Valente, A. Sibai, M. Sambucci, Extrusion-based additive manufacturing of
concrete products: revolutionizing and remodeling the construction industry,
J. Compos. Sci. 3 (3) (2019) 88.
[17] N. Roussel, J. Spangenberg, J. Wallevik, R. Wolfs, Numerical simulations of
concrete processing: from standard formative casting to additive manufacturing,
Cem. Concr. Res. 135 (2020), 106075.
[18] R.J.M. Wolfs, F.P. Bos, T.A.M. Salet, Early age mechanical behaviour of 3D printed
concrete: numerical modelling and experimental testing, Cem. Concr. Res. 106
(2018) 103–116.
[19] R. Comminal, M.P. Serdeczny, D.B. Pedersen, J. Spangenberg, Numerical modeling
of the strand deposition flow in extrusion-based additive manufacturing, Addit.
Manuf. 20 (2018) 68–76.
[20] R. Comminal, M.P. Serdeczny, D.B. Pedersen, J. Spangenberg, Numerical modeling
of the material deposition and contouring precision in fused deposition modeling,
in Proceedings of the 29th Annual International Solid Freeform Fabrication
Symposium, Austin, TX, USA, 2018, pp. 1855–1864.
[21] M.P. Serdeczny, R. Comminal, D.B. Pedersen, J. Spangenberg, Experimental
validation of a numerical model for the strand shape in material extrusion additive
manufacturing, Addit. Manuf. 24 (2018) 145–153.
[22] M.P. Serdeczny, R. Comminal, D.B. Pedersen, J. Spangenberg, Numerical
simulations of the mesostructure formation in material extrusion additive
manufacturing, Addit. Manuf. 28 (2019) 419–429.
[23] H. Xia, J. Lu, G. Tryggvason, A numerical study of the effect of viscoelastic stresses
in fused filament fabrication, Comput. Methods Appl. Mech. Eng. 346 (2019)
242–259.
[24] R. Comminal, W.R.L. da Silva, T.J. Andersen, H. Stang, J. Spangenberg, Influence
of processing parameters on the layer geometry in 3D concrete printing:
experiments and modelling, in: Proceedings of the Second RILEM International
Conference on Concrete and Digital Fabrication, vol. 28, 2020, pp. 852–862.
[25] R. Comminal, W.R.L. da Silva, T.J. Andersen, H. Stang, J. Spangenberg, Modelling
of 3D concrete printing based on computational fluid dynamics, Cem. Concr. Res.
38 (2020), 106256.
[26] E.C. Bingham, An investigation of the laws of plastic flow, US Bur. Stand. Bull. 13
(1916) 309–352.
[27] N. Casson, A flow equation for pigment-oil suspensions of the printing ink type,
Rheol. Disperse Syst. (1959) 84–104.
[28] W.H. Herschel, R. Bulkley, Konsistenzmessungen von Gummi-Benzollosungen, ¨
Kolloid Z. 39 (1926) 291–300.
[29] “FLOW-3D | We solve The World’s Toughest CFD Problems,” FLOW SCIENCE.
〈https://www.flow3d.com/〉. (Accessed 27 June 2020).
[30] S. Jacobsen, R. Cepuritis, Y. Peng, M.R. Geiker, J. Spangenberg, Visualizing and
simulating flow conditions in concrete form filling using pigments, Constr. Build.
Mater. 49 (2013) 328–342.
[31] E.J. O’Donovan, R.I. Tanner, Numerical study of the Bingham squeeze film
problem, J. Non-Newton. Fluid Mech. 15 (1) (1984) 75–83.
[32] C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free
boundaries, J. Comput. Phys. 39 (1) (1981) 201–225.
[33] R. Comminal, J. Spangenberg, J.H. Hattel, Cellwise conservative unsplit advection
for the volume of fluid method, J. Comput. Phys. 283 (2015) 582–608.
[34] A. Negar, S. Nazarian, N.A. Meisel, J.P. Duarte, Experimental prediction of material
deformation in large-scale additive manufacturing of concrete, Addit. Manuf. 37
(2021), 101656.

Figure 2. Schematic diagram for pilot-scale cooling-water circulation system (a) along with a real picture of the system (b).

Application of Computational Fluid Dynamics in Chlorine-Dynamics Modeling of In-Situ Chlorination Systems for Cooling Systems

Jongchan Yi 1, Jonghun Lee 1, Mohd Amiruddin Fikri 2,3, Byoung-In Sang 4 and Hyunook Kim 1,*

Abstract

염소화는 상대적인 효율성과 저렴한 비용으로 인해 발전소 냉각 시스템에서 생물학적 오염을 제어하는​​데 선호되는 방법입니다. 해안 지역에 발전소가 있는 경우 바닷물을 사용하여 현장에서 염소를 전기화학적으로 생성할 수 있습니다. 이를 현장 전기염소화라고 합니다. 이 접근 방식은 유해한 염소화 부산물이 적고 염소를 저장할 필요가 없다는 점을 포함하여 몇 가지 장점이 있습니다. 그럼에도 불구하고, 이 전기화학적 공정은 실제로는 아직 초기 단계에 있습니다. 이 연구에서는 파일럿 규모 냉각 시스템에서 염소 붕괴를 시뮬레이션하기 위해 병렬 1차 동역학을 적용했습니다. 붕괴가 취수관을 따라 발생하기 때문에 동역학은 전산유체역학(CFD) 코드에 통합되었으며, 이후에 파이프의 염소 거동을 시뮬레이션하는데 적용되었습니다. 실험과 시뮬레이션 데이터는 강한 난류가 형성되는 조건하에서도 파이프 벽을 따라 염소 농도가 점진적인 것으로 나타났습니다. 염소가 중간보다 파이프 표면을 따라 훨씬 더 집중적으로 남아 있다는 사실은 전기 염소화를 기반으로 하는 시스템의 전체 염소 요구량을 감소시킬 수 있었습니다. 현장 전기 염소화 방식의 냉각 시스템은 직접 주입 방식에 필요한 염소 사용량의 1/3만 소비했습니다. 따라서 현장 전기염소화는 해안 지역의 발전소에서 바이오파울링 제어를 위한 비용 효율적이고 환경 친화적인 접근 방식으로 사용될 수 있다고 결론지었습니다.

Chlorination is the preferred method to control biofouling in a power plant cooling system due to its comparative effectiveness and low cost. If a power plant is located in a coastal area, chlorine can be electrochemically generated in-situ using seawater, which is called in-situ electrochlorination; this approach has several advantages including fewer harmful chlorination byproducts and no need for chlorine storage. Nonetheless, this electrochemical process is still in its infancy in practice. In this study, a parallel first-order kinetics was applied to simulate chlorine decay in a pilot-scale cooling system. Since the decay occurs along the water-intake pipe, the kinetics was incorporated into computational fluid dynamics (CFD) codes, which were subsequently applied to simulate chlorine behavior in the pipe. The experiment and the simulation data indicated that chlorine concentrations along the pipe wall were incremental, even under the condition where a strong turbulent flow was formed. The fact that chlorine remained much more concentrated along the pipe surface than in the middle allowed for the reduction of the overall chlorine demand of the system based on the electro-chlorination. The cooling system, with an in-situ electro-chlorination, consumed only 1/3 of the chlorine dose demanded by the direct injection method. Therefore, it was concluded that in-situ electro-chlorination could serve as a cost-effective and environmentally friendly approach for biofouling control at power plants on coastal areas.

Keywords

computational fluid dynamics; power plant; cooling system; electro-chlorination; insitu chlorination

Figure 1. Electrodes and batch experiment set-up. (a) Two cylindrical electrodes used in this study. (b) Batch experiment set-up for kinetic tests.
Figure 1. Electrodes and batch experiment set-up. (a) Two cylindrical electrodes used in this study. (b) Batch experiment set-up for kinetic tests.
Figure 2. Schematic diagram for pilot-scale cooling-water circulation system (a) along with a real picture of the system (b).
Figure 2. Schematic diagram for pilot-scale cooling-water circulation system (a) along with a real picture of the system (b).
Figure 3. Free chlorine decay curves in seawater with different TOC and initial chlorine concentration. Each line represents the predicted concentration of chlorine under a given condition. (a) Artificial seawater solution with 1 mg L−1 of TOC; (b) artificial seawater solution with 2 mg L−1 of TOC; (c) artificial seawater solution with 3 mg L−1 of TOC; (d) West Sea water (1.3 mg L−1 of TOC).
Figure 3. Free chlorine decay curves in seawater with different TOC and initial chlorine concentration. Each line represents the predicted concentration of chlorine under a given condition. (a) Artificial seawater solution with 1 mg L−1 of TOC; (b) artificial seawater solution with 2 mg L−1 of TOC; (c) artificial seawater solution with 3 mg L−1 of TOC; (d) West Sea water (1.3 mg L−1 of TOC).
Figure 4. Correlation between model and experimental data in the chlorine kinetics using seawater.
Figure 4. Correlation between model and experimental data in the chlorine kinetics using seawater.
Figure 5. Free chlorine concentrations in West Sea water under different current conditions in an insitu electro-chlorination system.
Figure 5. Free chlorine concentrations in West Sea water under different current conditions in an insitu electro-chlorination system.
Figure 6. Free chlorine distribution along the sampling ports under different flow rates. Each dot represents experimental data, and each point on the black line is the expected chlorine concentration obtained from computational fluid dynamics (CFD) simulation with a parallel first-order decay model. The red-dotted line is the desirable concentration at the given flow rate: (a) 600 L min−1 of flow rate, (b) 700 L min−1 of flow rate, (c) 800 L min−1 of flow rate, (d) 900 L min−1 of flow rate.
Figure 6. Free chlorine distribution along the sampling ports under different flow rates. Each dot represents experimental data, and each point on the black line is the expected chlorine concentration obtained from computational fluid dynamics (CFD) simulation with a parallel first-order decay model. The red-dotted line is the desirable concentration at the given flow rate: (a) 600 L min−1 of flow rate, (b) 700 L min−1 of flow rate, (c) 800 L min−1 of flow rate, (d) 900 L min−1 of flow rate.
Figure 7. Fluid contour images from CFD simulation of the electro-chlorination experiment. Inlet flow rate is 800 L min−1. Outlet pressure was set to 10.8 kPa. (a) Chlorine concentration; (b) expanded view of electrode side in image (a); (c) velocity magnitude; (d) pressure.
Figure 7. Fluid contour images from CFD simulation of the electro-chlorination experiment. Inlet flow rate is 800 L min−1. Outlet pressure was set to 10.8 kPa. (a) Chlorine concentration; (b) expanded view of electrode side in image (a); (c) velocity magnitude; (d) pressure.
Figure 8. Chlorine concentration contour in the simulation of full-scale in-situ electro-chlorination with different cathode positions. The pipe diameter is 2 m and the flow rate is 14 m3 s−1. The figure shows 10 m of the pipeline. (a) The simulation result when the cathode is placed on the surface of the pipe wall. (b) The simulation result when the cathode is placed on the inside of the pipe with 100 mm of distance from the pipe wall.
Figure 8. Chlorine concentration contour in the simulation of full-scale in-situ electro-chlorination with different cathode positions. The pipe diameter is 2 m and the flow rate is 14 m3 s−1. The figure shows 10 m of the pipeline. (a) The simulation result when the cathode is placed on the surface of the pipe wall. (b) The simulation result when the cathode is placed on the inside of the pipe with 100 mm of distance from the pipe wall.
Figure 9. Comparison of in-situ electro-chlorination and direct chlorine injection in full-scale applications. (a) Estimated chlorine concentrations along the pipe surface. (b) Relative chlorine demands.
Figure 9. Comparison of in-situ electro-chlorination and direct chlorine injection in full-scale applications. (a) Estimated chlorine concentrations along the pipe surface. (b) Relative chlorine demands.

References

  1. Macknick, J.; Newmark, R.; Heath, G.; Hallett, K.C. Operational water consumption and withdrawal factors for electricity generating technologies: A review of existing literature. Environ. Res. Lett. 2012, 7, 045802.
  2. Pan, S.-Y.; Snyder, S.W.; Packman, A.I.; Lin, Y.J.; Chiang, P.-C. Cooling water use in thermoelectric power generation and its associated challenges for addressing water-energy nexus. Water-Energy Nexus 2018, 1, 26–41.
  3. Feeley, T.J., III; Skone, T.J.; Stiegel, G.J., Jr.; McNemar, A.; Nemeth, M.; Schimmoller, B.; Murphy, J.T.;
    Manfredo, L. Water: A critical resource in the thermoelectric power industry. Energy 2008, 33, 1–11.
  4. World Nuclear Association. World Nuclear Performance Report 2016; World Nuclear Association: London, UK, 2016.
  5. Pugh, S.; Hewitt, G.; Müller-Steinhagen, H. Fouling during the use of seawater as coolant—The development of a user guide. Heat Transf. Eng. 2005, 26, 35–43.
  6. Satpathy, K.K.; Mohanty, A.K.; Sahu, G.; Biswas, S.; Prasad, M.; Slvanayagam, M. Biofouling and its control in seawater cooled power plant cooling water system—A review. Nucl. Power 2010, 17, 191–242.
  7. Cristiani, P.; Perboni, G. Antifouling strategies and corrosion control in cooling circuits. Bioelectrochemistry 2014, 97, 120–126.
  8. Walker, M.E.; Safari, I.; Theregowda, R.B.; Hsieh, M.-K.; Abbasian, J.; Arastoopour, H.; Dzombak, D.A.; Miller, D.C. Economic impact of condenser fouling in existing thermoelectric power plants. Energy 2012,44, 429–437.
  9. Yi, J.; Ahn, Y.; Hong, M.; Kim, G.-H.; Shabnam, N.; Jeon, B.; Sang, B.-I.; Kim, H. Comparison between OCl−-Injection and In Situ Electrochlorination in the Formation of Chlorate and Perchlorate in Seawater. Appl.Sci. 2019, 9, 229.
  10. Xue, Y.; Zhao, J.; Qiu, R.; Zheng, J.; Lin, C.; Ma, B.; Wang, P. In Situ glass antifouling using Pt nanoparticle coating for periodic electrolysis of seawater. Appl. Surf. Sci. 2015, 357, 60–68.
  11. Mahfouz, A.B.; Atilhan, S.; Batchelor, B.; Linke, P.; Abdel-Wahab, A.; El-Halwagi, M.M. Optimal scheduling of biocide dosing for seawater-cooled power and desalination plants. Clean Technol. Environ. Policy 2011, 13, 783–796.
  12. Rubio, D.; López-Galindo, C.; Casanueva, J.F.; Nebot, E. Monitoring and assessment of an industrial antifouling treatment. Seasonal effects and influence of water velocity in an open once-through seawater cooling system. Appl. Therm. Eng. 2014, 67, 378–387.
  13. European Integrated Pollution Prevention and Control (IPPC) Bureau, European Commission. Reference Document on the Application of Best Available Techniques to Industrial Cooling Systems December 2001; European Commission, Tech. Rep: Brussels, Belgium, 2001.
  14. Venkatesan R.; Murthy P. S. Macrofouling Control in Power Plants. In Springer Series on Biofilms; Springer: Berlin/Heidelberg, Germany, 2008.
  15. Kastl, G.; Fisher, I.; Jegatheesan, V. Evaluation of chlorine decay kinetics expressions for drinking water distribution systems modelling. J. Water Supply Res. Technol. AQUA 1999, 48, 219–226.
  16. Fisher, I.; Kastl, G.; Sathasivan, A.; Cook, D.; Seneverathne, L. General model of chlorine decay in blends of surface waters, desalinated water, and groundwaters. J. Environ. Eng. 2015, 141, 04015039.
  17. Fisher, I.; Kastl, G.; Sathasivan, A.; Jegatheesan, V. Suitability of chlorine bulk decay models for planning and management of water distribution systems. Crit. Rev. Environ. Sci. Technol. 2011, 41, 1843–1882.
  18. Fisher, I.; Kastl, G.; Sathasivan, A. Evaluation of suitable chlorine bulk-decay models for water distribution systems. Water Res. 2011, 45, 4896–4908.
  19. Haas, C.N.; Karra, S. Kinetics of wastewater chlorine demand exertion. J. (Water Pollut. Control Fed.) 1984, 56, 170–173.
  20. Zeng, J.; Jiang, Z.; Chen, Q.; Zheng, P.; Huang, Y. The decay kinetics of residual chlorine in cooling seawater simulation experiments. Acta Oceanol. Sin. 2009, 28, 54–59.
  21. Saeed, S.; Prakash, S.; Deb, N.; Campbell, R.; Kolluru, V.; Febbo, E.; Dupont, J. Development of a sitespecific kinetic model for chlorine decay and the formation of chlorination by-products in seawater. J. Mar. Sci. Eng. 2015, 3, 772–792.
  22. Al Heboos, S.; Licskó, I. Application and comparison of two chlorine decay models for predicting bulk chlorine residuals. Period. Polytech. Civ. Eng. 2017, 61, 7–13.
  23. Shadloo, M.S.; Oger, G.; Le Touzé, D. Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: Motivations, current state, and challenges. Comput. Fluids 2016, 136, 11–34.
  24. Wols, B.; Hofman, J.; Uijttewaal, W.; Rietveld, L.; Van Dijk, J. Evaluation of different disinfection calculation methods using CFD. Environ. Model. Softw. 2010, 25, 573–582.
  25. Angeloudis, A.; Stoesser, T.; Falconer, R.A. Predicting the disinfection efficiency range in chlorine contact tanks through a CFD-based approach. Water Res. 2014, 60, 118–129.
  26. Zhang, J.; Tejada-Martínez, A.E.; Zhang, Q. Developments in computational fluid dynamics-based modeling for disinfection technologies over the last two decades: A review. Environ. Model. Softw. 2014, 58,71–85.
  27. Lim, Y.H.; Deering, D.D. In Modeling Chlorine Residual in a Ground Water Supply Tank for a Small Community in Cold Conditions, World Environmental and Water Resources Congress 2017; American Society of Civil Engineers: Reston, Virginia, USA, 2017; pp. 124–138.
  28. Hernández-Cervantes, D.; Delgado-Galván, X.; Nava, J.L.; López-Jiménez, P.A.; Rosales, M.; Mora Rodríguez, J. Validation of a computational fluid dynamics model for a novel residence time distribution analysis in mixing at cross-junctions. Water 2018, 10, 733.
  29. Hua, F.; West, J.; Barker, R.; Forster, C. Modelling of chlorine decay in municipal water supplies. Water Res. 1999, 33, 2735–2746.
  30. Jonkergouw, P.M.; Khu, S.-T.; Savic, D.A.; Zhong, D.; Hou, X.Q.; Zhao, H.-B. A variable rate coefficient chlorine decay model. Environ. Sci. Technol. 2009, 43, 408–414.
  31. Nejjari, F.; Puig, V.; Pérez, R.; Quevedo, J.; Cugueró, M.; Sanz, G.; Mirats, J. Chlorine decay model calibration and comparison: Application to a real water network. Procedia Eng. 2014, 70, 1221–1230.
  32. Kohpaei, A.J.; Sathasivan, A.; Aboutalebi, H. Effectiveness of parallel second order model over second and first order models. Desalin. Water Treat. 2011, 32, 107–114.
  33. Powell, J.C.; Hallam, N.B.; West, J.R.; Forster, C.F.; Simms, J. Factors which control bulk chlorine decay rates. Water Res. 2000, 34, 117–126.
  34. Clark, R.M.; Sivaganesan, M. Predicting chlorine residuals in drinking water: Second order model. J. Water Resour. Plan. Manag. 2002, 128, 152–161.
  35. Li, X.; Li, C.; Bayier, M.; Zhao, T.; Zhang, T.; Chen, X.; Mao, X. Desalinated seawater into pilot-scale drinking water distribution system: Chlorine decay and trihalomethanes formation. Desalin. Water Treat. 2016, 57,19149–19159.
  36. United States Environmental Protection Agency (EPA). Chlorine, Total Residual (Spectrophotometric, DPD); EPA-NERL: 330.5; EPA: Cincinnati, OH, USA, 1978.
  37. Polman, H.; Verhaart, F.; Bruijs, M. Impact of biofouling in intake pipes on the hydraulics and efficiency of pumping capacity. Desalin. Water Treat. 2013, 51, 997–1003.
  38. Rajagopal, S.; Van der Velde, G.; Van der Gaag, M.; Jenner, H.A. How effective is intermittent chlorination to control adult mussel fouling in cooling water systems? Water Res. 2003, 37, 329–338.
  39. Bruijs, M.C.; Venhuis, L.P.; Daal, L. Global Experiences in Optimizing Biofouling Control through PulseChlorination®. 2017. Available online: https://www.researchgate.net/publication/318561645_Global_Experiences_in_Optimizing_Biofouling_Co ntrol_through_Pulse-ChlorinationR (accessed on 1 May 2020).
  40. Kim, H.; Hao, O.J.; McAvoy, T.J. Comparison between model-and pH/ORP-based process control for an AAA system. Tamkang J. Sci. Eng. 2000, 3, 165–172.
  41. Brdys, M.; Chang, T.; Duzinkiewicz, K. Intelligent Model Predictive Control of Chlorine Residuals in Water Distribution Systems, Bridging the Gap: Meeting the World’s Water and Environmental Resources Challenges. In Proceedings of the ASCE Water Resource Engineering and Water Resources Planning and Management, July 30–August 2, 2000; pp. 1–11
Computational Fluid Dynamics, 온실

CFD 사용: 유압 구조 및 농업에서의 응용

USO DE CFD COMO HERRAMIENTA PARA LA MODELACIÓN Y  PREDICCIÓN NUMÉRICA DE LOS FLUIDOS: APLICACIONES EN  ESTRUCTURAS HIDRÁULICAS Y AGRICULTURA

Cruz Ernesto Aguilar-Rodriguez1*; Candido Ramirez-Ruiz2; Erick Dante Mattos Villarroel3 

1Tecnológico Nacional de México/ITS de Los Reyes. Carretera Los Reyes-Jacona, Col. Libertad. 60300.  Los Reyes de Salgado, Michoacán. México. 

ernesto.ar@losreyes.tecnm.mx – 3541013901 (*Autor de correspondencia) 

2Instituto de Ciencias Aplicadas y Tecnología, UNAM. Cto. Exterior S/N, C.U., Coyoacán, 04510, Ciudad  de México. México.  3Riego y Drenaje. Instituto Mexicano de Tecnología del Agua. Paseo Cuauhnáhuac 8532, Progreso,  Jiutepec, Morelos, C.P. 62550. México.

Abstract

공학에서 유체의 거동은 설명하기에 광범위하고 복잡한 과정이며, 유체역학은 유체의 거동을 지배하는 방정식을 통해 유체 역학 현상을 분석할 수 있는 과학 분야이지만 이러한 방정식에는 전체 솔루션이 없습니다. . 전산유체역학(Computational Fluid Dynamics, 이하 CFD)은 수치적 기법을 통해 방정식의 해에 접근할 수 있는 도구로, 신뢰할 수 있는 계산 모델을 얻기 위해서는 물리적 모델의 실험 데이터로 평가해야 합니다. 수력구조물에서 선형 및 미로형 여수로에서 시뮬레이션을 수행하고 배출 시트의 거동과 현재의 폭기 조건을 분석했습니다. 침강기에서 유체의 특성화를 수행하고 필요한 특성에 따라 사체적, 피스톤 또는 혼합의 분수를 수정하는 것이 가능합니다. 농업에서는 온실 환경을 특성화하고 환경에 대한 재료의 디자인, 방향 및 유형 간의 관계를 찾는 데 사용할 수 있습니다. 발견된 가장 중요한 결과 중 온실의 길이와 설계가 환기율에 미칠 수 있는 영향으로 온실의 길이는 높이의 6배 미만인 것이 권장됩니다.

키워드: Computational Fluid Dynamics, 온실,

Spillway, Settler 기사: COMEII-21048 소개 

CFD는 유체 운동 문제에 대한 수치적 솔루션을 얻어 수리학적 현상을 더 잘 이해할 수 있게 함으로써 공간 시각화를 가능하게 하는 수치 도구입니다. 예를 들어, 수력 공학에서 벤츄리(Xu, Gao, Zhao, & Wang, 2014) 워터 펌핑(ȘCHEAUA, 2016) 또는 개방 채널 적용( Wu et 알., 2000). 

문헌 검토는 실험 연구에서 검증된 배수로의 흐름 거동에 대한 수리학적 분석을 위한 CFD 도구의 효율성을 보여줍니다. 이 검토는 둑의 흐름 거동에 대한 수리학적 분석을 위한 CFD의 효율성을 보여줍니다. Crookston et al. (2012)는 미로 여수로에 대해 Flow 3D로 테스트를 수행했으며, 배출 계수의 결과는 3%에서 7%까지 다양한 오류로 실험적으로 얻은 결과로 허용 가능했으며 연구 결과 측면에 저압 영역이 있음을 발견했습니다. 익사 방식으로 작업할 때 위어의 벽. Zuhair(2013)는 수치 모델링 결과를 Mandali weir 원형의 실험 데이터와 비교했습니다.  

최근 연구에서는 다양한 난류 모델을 사용하여 CFD를 적용할 가능성이 있음을 보여주었습니다. 그리고 일부만이 음용수 처리를 위한 침적자의 사례 연구를 제시했으며, 다른 설계 변수 중에서 기하학적인 대안, 수온 변화 등을 제안했습니다. 따라서 기술 개발로 인해 설계 엔지니어가 유체 거동을 분석하는 데 CFD 도구를 점점 더 많이 사용하게 되었습니다. 

보호 농업에서 CFD는 온실 환경을 모델링하고 보조 냉방 또는 난방 시스템을 통해 온실의 미기후 관리를 위한 전략을 제안하는 데 사용되는 기술이었습니다(Aguilar Rodríguez et al., 2020).  

2D 및 3D CFD 모델을 사용한 본격적인 온실 시뮬레이션은 태양 복사 모델과 현열 및 잠열 교환 하위 모델의 통합을 통해 온실의 미기후 분포를 연구하는 데 사용되었습니다(Majdoubi, Boulard, Fatnassi, & Bouirden, 2009). 마찬가지로 이 모델을 사용하여 온실 설계(Sethi, 2009), 덮개 재료(Baxevanou, Fidaros, Bartzanas, & Kittas, 2018), 시간, 연중 계절( Tong, Christopher, Li, & Wang, 2013), 환기 유형 및 구성(Bartzanas, Boulard, & Kittas, 2004). 

CFD 거래 프로그램은 사용자 친화적인 플랫폼으로 설계되어 결과를 쉽게 관리하고 이해할 수 있습니다.  

Figura 1. Distribución de presiones y velocidades en un vertedor de pared delgada.
Figura 2. Perfiles de velocidad y presión en la cresta vertedora.
Figura 3. Condiciones de aireación en vertedor tipo laberinto. (A)lámina adherida a la pared del
vertedor, (B) aireado, (C) parcialmente aireado, (D) ahogado.
Figura 4. Realización de prueba de riego.
Figura 5. Efecto de la posición y dirección de los calefactores en un invernadero a 2 m del suelo.
Figura 5. Efecto de la posición y dirección de los calefactores en un invernadero a 2 m del suelo.
Figura 6. Indicadores ambientales para medir el confort ambiental de los cultivos.
Figura 6. Indicadores ambientales para medir el confort ambiental de los cultivos.
Figura 7. Líneas de corriente dentro del sedimentador experimental en estado estacionario  (Ramirez-Ruiz, 2019).
Figura 7. Líneas de corriente dentro del sedimentador experimental en estado estacionario (Ramirez-Ruiz, 2019).

Referencias Bibliográficas

Aguilar-Rodriguez, C.; Flores-Velazquez, J.; Ojeda-Bustamante, W.; Rojano, F.; Iñiguez-
Covarrubias, M. 2020. Valuation of the energyperformance of a greenhouse with

an electric heater using numerical simulations. Processes, 8, 600.

Aguilar-Rodriguez, C.; Flores-Velazquez, J.; Rojano, F.; Ojeda-Bustamante, W.; Iñiguez-
Covarrubias, M. 2020. Estimación del ciclo de cultivo de tomate (Solanum

lycopersicum L.) en invernadero, con base en grados días calor (GDC) simulados
con CFD. Tecnología y ciencias del agua, ISSN 2007-2422, 11(4), 27-57.
Al-Sammarraee, M., y Chan, A. (2009). Large-eddy simulations of particle sedimentation
in a longitudinal sedimentation basin of a water treatment plant. Part 2: The effects
of baffles. Chemical Engineering Journal, 152(2-3), 315-321.
doi:https://doi.org/10.1016/j.cej.2009.01.052.
Bartzanas, T.; Boulard, T.; Kittas, C. 2004. Effect of vent arrangement on windward
ventilation of a tunnel greenhouse. Biosystems Engineering, 88(4).
Baxevanou, C.; Fidaros, D.; Bartzanas, T.; Kittas, C. 2018. Yearly numerical evaluation of
greenhouse cover materials. Computers and Electronics in Agriculture, 149, 54–

  1. DOI: https://doi.org/10.1016/j.compag.2017.12.006.
    Crookston, B. M., & Tullis, B. P. 2012. Labyrinth weirs: Nappe interference and local
    submergence. Journal of Irrigation and Drainage Engineering, 138(8), 757-765.
    Fernández, J. M. 2012. Técnicas numéricas en Ingeniería de Fluidos: Introducción a la
    Dinámica de Fluidos Computacional (CFD) por el Método de Volumen Finito;
    Reverté, Barcelona, pp. 98-294.
    Goula, A., Kostoglou, M., Karapantsios, T., y Zouboulis, A. (2008). The effect of influent
    temperature variations in a sedimentation tank for potable water treatment— A
    computational fluid dynamics study. Water Research, 42(13), 3405-3414.
    doi://doi.org/10.1016/j.watres.2008.05.002.
    Majdoubi, H.; Boulard, T.; Fatnassi, H.; Bouirden, L. 2009. Airflow and microclimate
    patterns in a one-hectare Canary type greenhouse: an experimental and CFD
    assisted study. Agricultural and Forest Meteorology, 149(6-7), 1050-1062.
    Ramirez-Ruiz Candido (2019). Estudio hidrodinámico de sedimentadores de alta tasa en
    plantas potabilizadoras utilizando dinámica de fluidos computacional (CFD).
    Universidad Nacional Autónoma de México. Tesis de maestría.
    Sánchez, J. M. C., & Elsitdié, L. G. C. 2011. Consideraciones del mallado aplicadas al
    cálculo de flujos bifásicos con las técnicas de dinámica de fluidos computacional.
    J. Introd. Inv. UPCT., 4, 33-35.
    Sethi, V.P. 2009. On the selection of shape and orientation of a greenhouse: Thermal
    modeling and experimental validation, Sol. Energy, 83, 21–38.
    ȘCHEAUA, F. 2016. AGRICULTURAL FIELD IRRIGATION SOLUTION BASED ON
    VENTURI NOZZLE γ 2 g γ 2 g. JOURNAL OF INDUSTRIAL DESIGN AND
    ENGINEERING GRAPHICS, 2(1), 31–35.

Tong, G.; Christopher, D.; Li, T.; Wang, T. 2013. Passive solar energy utilization: a review
of cross-section building parameter selection for Chinese solar greenhouses.
Renewable and Sustainable Energy Reviews, 26, 540-548.

Xu, Y., Gao, L., Zhao, Y., & Wang, H. 2014. Wet gas overreading characteristics of a long-
throat Venturi at high pressure based on CFD. Flow Measurement and

Instrumentation, 40, 247–255. https://doi.org/10.1016/j.flowmeasinst.2014.09.004
Wu, W., Rodi, W y Wenka, T. 2000. 3D numerical modeling of flow and sediment transport
in open channels. ASCE Journal of Hydraulic Engineering. Vol 126 Num 1.
Zuhair al zubaidy, Riyadh. 2013. Numerical Simulation of Two-Phase Flow.
En:International Journal of Structural and Civil Engineering Research. Vol 2, No 3;
13p

Fig. 5. The predicted shapes of initial breach (a) Rectangular (b) V-notch. Fig. 6. Dam breaching stages.

Investigating the peak outflow through a spatial embankment dam breach

공간적 제방댐 붕괴를 통한 최대 유출량 조사

Mahmoud T.GhonimMagdy H.MowafyMohamed N.SalemAshrafJatwaryFaculty of Engineering, Zagazig University, Zagazig 44519, Egypt

Abstract

Investigating the breach outflow hydrograph is an essential task to conduct mitigation plans and flood warnings. In the present study, the spatial dam breach is simulated by using a three-dimensional computational fluid dynamics model, FLOW-3D. The model parameters were adjusted by making a comparison with a previous experimental model. The different parameters (initial breach shape, dimensions, location, and dam slopes) are studied to investigate their effects on dam breaching. The results indicate that these parameters have a significant impact. The maximum erosion rate and peak outflow for the rectangular shape are higher than those for the V-notch by 8.85% and 5%, respectively. Increasing breach width or decreasing depth by 5% leads to increasing maximum erosion rate by 11% and 15%, respectively. Increasing the downstream slope angle by 4° leads to an increase in both peak outflow and maximum erosion rate by 2.0% and 6.0%, respectively.

유출 유출 수문곡선을 조사하는 것은 완화 계획 및 홍수 경보를 수행하는 데 필수적인 작업입니다. 본 연구에서는 3차원 전산유체역학 모델인 FLOW-3D를 사용하여 공간 댐 붕괴를 시뮬레이션합니다. 이전 실험 모델과 비교하여 모델 매개변수를 조정했습니다.

다양한 매개변수(초기 붕괴 형태, 치수, 위치 및 댐 경사)가 댐 붕괴에 미치는 영향을 조사하기 위해 연구됩니다. 결과는 이러한 매개변수가 상당한 영향을 미친다는 것을 나타냅니다. 직사각형 형태의 최대 침식율과 최대 유출량은 V-notch보다 각각 8.85%, 5% 높게 나타났습니다.

위반 폭을 늘리거나 깊이를 5% 줄이면 최대 침식률이 각각 11% 및 15% 증가합니다. 하류 경사각을 4° 증가시키면 최대 유출량과 최대 침식률이 각각 2.0% 및 6.0% 증가합니다.

Keywords

Spatial dam breach; FLOW-3D; Overtopping erosion; Computational fluid dynamics (CFD)

1. Introduction

There are many purposes for dam construction, such as protection from flood disasters, water storage, and power generationEmbankment failures may have a catastrophic impact on lives and infrastructure in the downstream regions. One of the most common causes of embankment dam failure is overtopping. Once the overtopping of the dam begins, the breach formation will start in the dam body then end with the dam failure. This failure occurs within a very short time, which threatens to be very dangerous. Therefore, understanding and modeling the embankment breaching processes is essential for conducting mitigation plans, flood warnings, and forecasting flood damage.

The analysis of the dam breaching process is implemented by different techniques: comparative methods, empirical models with dimensional and dimensionless solutions, physical-based models, and parametric models. These models were described in detail [1]Parametric modeling is commonly used to simulate breach growth as a time-dependent linear process and calculate outflow discharge from the breach using hydraulics principles [2]. Alhasan et al. [3] presented a simple one-dimensional mathematical model and a computer code to simulate the dam breaching process. These models were validated by small dams breaching during the floods in 2002 in the Czech Republic. Fread [4] developed an erosion model (BREACH) based on hydraulics principles, sediment transport, and soil mechanics to estimate breach size, time of formation, and outflow discharge. Říha et al. [5] investigated the dam break process for a cascade of small dams using a simple parametric model for piping and overtopping erosion, as well as a 2D shallow-water flow model for the flood in downstream areas. Goodarzi et al. [6] implemented mathematical and statistical methods to assess the effect of inflows and wind speeds on the dam’s overtopping failure.

Dam breaching studies can be divided into two main modes of erosion. The first mode is called “planar dam breach” where the flow overtops the whole dam width. While the second mode is called “spatial dam breach” where the flow overtops through the initial pilot channel (i.e., a channel created in the dam body). Therefore, the erosion will be in both vertical and horizontal directions [7].

The erosion process through the embankment dams occurs due to the shear stress applied by water flows. The dam breaching evolution can be divided into three stages [8][9], but Y. Yang et al. [10] divided the breach development into five stages: Stage I, the seepage erosion; Stage II, the initial breach formation; Stage III, the head erosion; Stage IV, the breach expansion; and Stage V, the re-equilibrium of the river channel through the breach. Many experimental tests have been carried out on non-cohesive embankment dams with an initial breach to examine the effect of upstream inflow discharges on the longitudinal profile evolution and the time to inflection point [11].

Zhang et al. [12] studied the effect of changing downstream slope angle, sediment grain size, and dam crest length on erosion rates. They noticed that increasing dam crest length and decreasing downstream slope angle lead to decreasing sediment transport rate. While the increase in sediment grain size leads to an increased sediment transport rate at the initial stages. Höeg et al. [13] presented a series of field tests to investigate the stability of embankment dams made of various materials. Overtopping and piping were among the failure tests carried out for the dams composed of homogeneous rock-fill, clay, or gravel with a height of up to 6.0 m. Hakimzadeh et al. [14] constructed 40 homogeneous cohesive and non-cohesive embankment dams to study the effect of changing sediment diameter and dam height on the breaching process. They also used genetic programming (GP) to estimate the breach outflow. Refaiy et al. [15] studied different scenarios for the downstream drain geometry, such as length, height, and angle, to minimize the effect of piping phenomena and therefore increase dam safety.

Zhu et al. [16] examined the effect of headcut erosion on dam breach growth, especially in the case of cohesive dams. They found that the breach growth in non-cohesive embankments is slower than cohesive embankments due to the little effect of headcut. Schmocker and Hager [7] proposed a relationship for estimating peak outflow from the dam breach process.(1)QpQin-1=1.7exp-20hc23d5013H0

where: Qp = peak outflow discharge.

Qin = inflow discharge.

hc = critical flow depth.

d50 = mean sediment diameter.

Ho = initial dam height.

Yu et al. [17] carried out an experimental study for homogeneous non-cohesive embankment dams in a 180° bending rectangular flume to determine the effect of overtopping flows on breaching formation. They found that the main factors influencing breach formation are water level, river discharge, and embankment material diameter.

Wu et al. [18] carried out a series of experiments to investigate the effect of breaching geometry on both non-cohesive and cohesive embankment dams in a U-bend flume due to overtopping flows. In the case of non-cohesive embankments, the non-symmetrical lateral expansion was noticed during the breach formation. This expansion was described by a coefficient ranging from 2.7 to 3.3.

The numerical models of the dam breach can be categorized according to different parameters, such as flow dimensions (1D, 2D, or 3D), flow governing equations, and solution methods. The 1D models are mainly used to predict the outflow hydrograph from the dam breach. Saberi et al. [19] applied the 1D Saint-Venant equation, which is solved by the finite difference method to investigate the outflow hydrograph during dam overtopping failure. Because of the ability to study dam profile evolution and breach formation, 2D models are more applicable than 1D models. Guan et al. [20] and Wu et al. [21] employed both 2D shallow water equations (SWEs) and sediment erosion equations, which are solved by the finite volume method to study the effect of the dam’s geometry parameters on outflow hydrograph and dam profile evolution. Wang et al. [22] also proposed a second-order hybrid-type of total variation diminishing (TVD) finite-difference to estimate the breach outflow by solving the 2D (SWEs). The accuracy of (SWEs) for both vertical flow contraction and surface roughness has been assessed [23]. They noted that the accuracy of (SWEs) is acceptable for milder slopes, but in the case of steeper slopes, modelers should be more careful. Generally, the accuracy of 2D models is still low, especially with velocity distribution over the flow depth, lateral momentum exchange, density-driven flows, and bottom friction [24]. Therefore, 3D models are preferred. Larocque et al. [25] and Yang et al. [26] started to use three-dimensional (3D) models that depend on the Reynolds-averaged Navier-Stokes (RANS) equations.

Previous experimental studies concluded that there is no clear relationship between the peak outflow from the dam breach and the initial breach characteristics. Some of these studies depend on the sharp-crested weir fixed at the end of the flume to determine the peak outflow from the breach, which leads to a decrease in the accuracy of outflow calculations at the microscale. The main goals of this study are to carry out a numerical simulation for a spatial dam breach due to overtopping flows by using (FLOW-3D) software to find an empirical equation for the peak outflow discharge from the breach and determine the worst-case that leads to accelerating the dam breaching process.

2. Numerical simulation

The current study for spatial dam breach is simulated by using (FLOW-3D) software [27], which is a powerful computational fluid dynamics (CFD) program.

2.1. Geometric presentations

A stereolithographic (STL) file is prepared for each change in the initial breach geometry and dimensions. The CAD program is useful for creating solid objects and converting them to STL format, as shown in Fig. 1.

2.2. Governing equations

The governing equations for water flow are three-dimensional Reynolds Averaged Navier-Stokes equations (RANS).

The continuity equation:(2)∂ui∂xi=0

The momentum equation:(3)∂ui∂t+1VFuj∂ui∂xj=1ρ∂∂xj-pδij+ν∂ui∂xj+∂uj∂xi-ρu`iu`j¯

where u is time-averaged velocity,ν is kinematic viscosity, VF is fractional volume open to flow, p is averaged pressure and -u`iu`j¯ are components of Reynold’s stress. The Volume of Fluid (VOF) technique is used to simulate the free surface profile. Hirt et al. [28] presented the VOF algorithm, which employs the function (F) to express the occupancy of each grid cell with fluid. The value of (F) varies from zero to unity. Zero value refers to no fluid in the grid cell, while the unity value refers to the grid cell being fully occupied with fluid. The free surface is formed in the grid cells having (F) values between zero and unity.(4)∂F∂t+1VF∂∂xFAxu+∂∂yFAyv+∂∂zFAzw=0

where (u, v, w) are the velocity components in (x, y, z) coordinates, respectively, and (AxAyAz) are the area fractions.

2.3. Boundary and initial conditions

To improve the accuracy of the results, the boundary conditions should be carefully determined. In this study, two mesh blocks are used to minimize the time consumed in the simulation. The boundary conditions for mesh block 1 are as follows: The inlet and sides boundaries are defined as a wall boundary condition (wall boundary condition is usually used for bound fluid by solid regions. In the case of viscous flows, no-slip means that the tangential velocity is equal to the wall velocity and the normal velocity is zero), the outlet is defined as a symmetry boundary condition (symmetry boundary condition is usually used to reduce computational effort during CFD simulation. This condition allows the flow to be transferred from one mesh block to another. No inputs are required for this boundary condition except that its location should be defined accurately), the bottom boundary is defined as a uniform flow rate boundary condition, and the top boundary is defined as a specific pressure boundary condition with assigned atmospheric pressure. The boundary conditions for mesh block 2 are as follows: The inlet is defined as a symmetry boundary condition, the outlet is defined as a free flow boundary condition, the bottom and sides boundaries are defined as a wall boundary condition, and the top boundary is defined as a specific pressure boundary condition with assigned atmospheric pressure as shown in Fig. 2. The initial conditions required to be set for the fluid (i.e., water) inside of the domain include configuration, temperature, velocities, and pressure distribution. The configuration of water depends on the dimensions and shape of the dam reservoir. While the other conditions have been assigned as follows: temperature is normal water temperature (25 °c) and pressure distribution is hydrostatic with no initial velocity.

2.4. Numerical method

FLOW-3D uses the finite volume method (FVM) to solve the governing equation (Reynolds-averaged Navier-Stokes) over the computational domain. A finite-volume method is an Eulerian approach for representing and evaluating partial differential equations in algebraic equations form [29]. At discrete points on the mesh geometry, values are determined. Finite volume expresses a small volume surrounding each node point on a mesh. In this method, the divergence theorem is used to convert volume integrals with a divergence term to surface integrals. After that, these terms are evaluated as fluxes at each finite volume’s surfaces.

2.5. Turbulent models

Turbulence is the chaotic, unstable motion of fluids that occurs when there are insufficient stabilizing viscous forces. In FLOW-3D, there are six turbulence models available: the Prandtl mixing length model, the one-equation turbulent energy model, the two-equation (k – ε) model, the Renormalization-Group (RNG) model, the two-equation (k – ω) models, and a large eddy simulation (LES) model. For simulating flow motion, the RNG model is adopted to simulate the motion behavior better than the k – ε and k – ω.

models [30]. The RNG model consists of two main equations for the turbulent kinetic energy KT and its dissipation.εT(5)∂kT∂t+1VFuAx∂kT∂x+vAy∂kT∂y+wAz∂kT∂z=PT+GT+DiffKT-εT(6)∂εT∂t+1VFuAx∂εT∂x+vAy∂εT∂y+wAz∂εT∂z=C1.εTKTPT+c3.GT+Diffε-c2εT2kT

where KT is the turbulent kinetic energy, PT is the turbulent kinetic energy production, GT is the buoyancy turbulence energy, εT is the turbulent energy dissipation rate, DiffKT and Diffε are terms of diffusion, c1, c2 and c3 are dimensionless parameters, in which c1 and c3 have a constant value of 1.42 and 0.2, respectively, c2 is computed from the turbulent kinetic energy (KT) and turbulent production (PT) terms.

2.6. Sediment scour model

The sediment scour model available in FLOW-3D can calculate all the sediment transport processes including Entrainment transport, Bedload transport, Suspended transport, and Deposition. The erosion process starts once the water flows remove the grains from the packed bed and carry them into suspension. It happens when the applied shear stress by water flows exceeds critical shear stress. This process is represented by entrainment transport in the numerical model. After entrained, the grains carried by water flow are represented by suspended load transport. After that, some suspended grains resort to settling because of the combined effect of gravity, buoyancy, and friction. This process is described through a deposition. Finally, the grains sliding motions are represented by bedload transport in the model. For the entrainment process, the shear stress applied by the fluid motion on the packed bed surface is calculated using the standard wall function as shown in Eq.7.(7)ks,i=Cs,i∗d50

where ks,i is the Nikuradse roughness and Cs,i is a user-defined coefficient. The critical bed shear stress is defined by a dimensionless parameter called the critical shields number as expressed in Eq.8.(8)θcr,i=τcr,i‖g‖diρi-ρf

where θcr,i is the critical shields number, τcr,i is the critical bed shear stress, g is the absolute value of gravity acceleration, di is the diameter of the sediment grain, ρi is the density of the sediment species (i) and ρf is the density of the fluid. The value of the critical shields number is determined according to the Soulsby-Whitehouse equation.(9)θcr,i=0.31+1.2d∗,i+0.0551-exp-0.02d∗,i

where d∗,i is the dimensionless diameter of the sediment, given by Eq.10.(10)d∗,i=diρfρi-ρf‖g‖μf213

where μf is the fluid dynamic viscosity. For the sloping bed interface, the value of the critical shields number is modified according to Eq.11.(11)θ`cr,i=θcr,icosψsinβ+cos2βtan2φi-sin2ψsin2βtanφi

where θ`cr,i is the modified critical shields number, φi is the angle of repose for the sediment, β is the angle of bed slope and ψ is the angle between the flow and the upslope direction. The effects of the rolling, hopping, and sliding motions of grains along the packed bed surface are taken by the bedload transport process. The volumetric bedload transport rate (qb,i) per width of the bed is expressed in Eq.12.(12)qb,i=Φi‖g‖ρi-ρfρfdi312

where Φi is the dimensionless bedload transport rate is calculated by using Meyer Peter and Müller equation.(13)Φi=βMPM,iθi-θ`cr,i1.5cb,i

where βMPM,i is the Meyer Peter and Müller user-defined coefficient and cb,i is the volume fraction of species i in the bed material. The suspended load transport is calculated as shown in Eq.14.(14)∂Cs,i∂t+∇∙Cs,ius,i=∇∙∇DCs,i

where Cs,i is the suspended sediment mass concentration, D is the diffusivity, and us,i is the grain velocity of species i. Entrainment and deposition are two opposing processes that take place at the same time. The lifting and settling velocities for both entrainment and deposition processes are calculated according to Eq.15 and Eq.16, respectively.(15)ulifting,i=αid∗,i0.3θi-θ`cr,igdiρiρf-1(16)usettling,i=υfdi10.362+1.049d∗,i3-10.36

where αi is the entrainment coefficient of species i and υf is the kinematic viscosity of the fluid.

2.7. Grid type

Using simple rectangular orthogonal elements in planes and hexahedral in volumes in the (FLOW-3D) program makes the mesh generation process easier, decreases the required memory, and improves numerical accuracy. Two mesh blocks were used in a joined form with a size ratio of 2:1. The first mesh block is coarser, which contains the reservoir water, and the second mesh block is finer, which contains the dam. For achieving accuracy and efficiency in results, the mesh size is determined by using a grid convergence test. The optimum uniform cell size for the first mesh block is 0.012 m and for the second mesh block is 0.006 m.

2.8. Time step

The maximum time step size is determined by using a Courant number, which controls the distance that the flow will travel during the simulation time step. In this study, the Courant number was taken equal to 0.25 to prevent the flow from traveling through more than one cell in the time step. Based on the Courant number, a maximum time step value of 0.00075 s was determined.

2.9. Numerical model validation

The numerical model accuracy was achieved by comparing the numerical model results with previous experimental results. The experimental study of Schmocker and Hager [7] was based on 31 tests with changes in six parameters (d50, Ho, Bo, Lk, XD, and Qin). All experimental tests were conducted in a straight open glass-sided flume. The horizontal flume has a rectangular cross-section with a width of 0.4 m and a height of 0.7 m. The flume was provided with a flow straightener and an intake with a length of 0.66 m. All tested dams were inserted at various distances (XD) from the intake. Test No.1 from this experimental program was chosen to validate the numerical model. The different parameters used in test No.1 are as follows:

(1) uniform sediment with a mean diameter (d50 = 0.31 mm), (2) Ho = 0.2 m, (3) Bo = 0.2 m, (4) Lk = 0.1 m,

(5) XD = 1.0 m, (6) Qin = 6.0 lit/s, (7) Su and Sd = 2:1, (8) mass density (ρs = 2650 kg/m3(9) Homogenous and non-cohesive embankment dam. As shown in Fig. 2, the simulation is contained within a rectangular grid with dimensions: 3.56 m in the x-direction (where 0.66 m is used as inlet, 0.9 m as dam base width, and 1.0 m as outlet), in y-direction 0.2 m (dam length), and in the z-direction 0.3 m, which represents the dam height (0.2 m) with a free distance (0.1 m) above the dam. There are two main reasons that this experimental program is preferred for the validation process. The first reason is that this program deals with homogenous, non-cohesive soil, which is available in FLOW-3D. The second reason is that this program deals with small-scale models which saves time for numerical simulation. Finally, some important assumptions were considered during the validation process. The flow is assumed to be incompressible, viscous, turbulent, and three-dimensional.

By comparing dam profiles at different time instants for the experimental test with the current numerical model, it appears that the numerical model gives good agreement as shown in Fig. 3 and Fig. 4, with an average error percentage of 9% between the experimental results and the numerical model.

3. Analysis and discussions

The current model is used to study the effects of different parameters such as (initial breach shapes, dimensions, locations, upstream and downstream dam slopes) on the peak outflow discharge, QP, time of peak outflow, tP, and rate of erosion, E.

This study consists of a group of scenarios. The first scenario is changing the shapes of the initial breach according to Singh [1], the most predicted shapes are rectangular and V-notch as shown in Fig. 5. The second scenario is changing the initial breach dimensions (i.e., width and depth). While the third scenario is changing the location of the initial breach. Eventually, the last scenario is changing the upstream and downstream dam slopes.

All scenarios of this study were carried out under the same conditions such as inflow discharge value (Qin=1.0lit/s), dimensions of the tested dam, where dam height (Ho=0.20m), crest width.

(Lk=0.1m), dam length (Bo=0.20m), and homogenous & non-cohesive soil with a mean diameter (d50=0.31mm).

3.1. Dam breaching process evolution

The dam breaching process is a very complex process due to the quick changes in hydrodynamic conditions during dam failure. The dam breaching process starts once water flows reach the downstream face of the dam. During the initial stage of dam breaching, the erosion process is relatively quiet due to low velocities of flow. As water flows continuously, erosion rates increase, especially in two main zones: the crest and the downstream face. As soon as the dam crest is totally eroded, the water levels in the dam reservoir decrease rapidly, accompanied by excessive erosion in the dam body. The erosion process continues until the water levels in the dam reservoir equal the remaining height of the dam.

According to Zhou et al. [11], the breaching process consists of three main stages. The first stage starts with beginning overtopping flow, then ends when the erosion point directed upstream and reached the inflection point at the inflection time (ti). The second stage starts from the end of the stage1 until the occurrence of peak outflow discharge at the peak outflow time (tP). The third stage starts from the end of the stage2 until the value of outflow discharge becomes the same as the value of inflow discharge at the final time (tf). The outflow discharge from the dam breach increases rapidly during stage1 and stage2 because of the large dam storage capacity (i.e., the dam reservoir is totally full of water) and excessive erosion. While at stage3, the outflow values start to decrease slowly because most of the dam’s storage capacity was run out. The end of stage3 indicates that the dam storage capacity was totally run out, so the outflow equalized with the inflow discharge as shown in Fig. 6 and Fig. 7.

3.2. The effect of initial breach shape

To identify the effect of the initial breach shape on the evolution of the dam breaching process. Three tests were carried out with different cross-section areas for each shape. The initial breach is created at the center of the dam crest. Each test had an ID to make the process of arranging data easier. The rectangular shape had an ID (Rec5h & 5b), which means that its depth and width are equal to 5% of the dam height, and the V-notch shape had an ID (V-noch5h & 1:1) which means that its depth is equal to 5% of the dam height and its side slope is equal to 1:1. The comparison between rectangular and V-notch shapes is done by calculating the ratio between maximum dam height at different times (ZMax) to the initial dam height (Ho), rate of erosion, and hydrograph of outflow discharge for each test. The rectangular shape achieves maximum erosion rate and minimum inflection time, in addition to a rapid decrease in the dam reservoir levels. Therefore, the dam breaching is faster in the case of a rectangular shape than in a V-notch shape, which has the same cross-section area as shown in Fig. 8.

Also, by comparing the hydrograph for each test, the peak outflow discharge value in the case of a rectangular shape is higher than the V-notch shape by 5% and the time of peak outflow for the rectangular shape is shorter than the V-notch shape by 9% as shown in Fig. 9.

3.3. The effect of initial breach dimensions

The results of the comparison between the different initial breach shapes indicate that the worst initial breach shape is rectangular, so the second scenario from this study concentrated on studying the effect of a change in the initial rectangular breach dimensions. Groups of tests were carried out with different depths and widths for the rectangular initial breach. The first group had a depth of 5% from the dam height and with three different widths of 5,10, and 15% from the dam height, the second group had a depth of 10% with three different widths of 5,10, and 15%, the third group had a depth of 15% with three different widths of 5,10, and 15% and the final group had a width of 15% with three different heights of 5, 10, and 15% for a rectangular breach shape. The comparison was made as in the previous section to determine the worst case that leads to the quick dam failure as shown in Fig. 10.

The results show that the (Rec 5 h&15b) test achieves a maximum erosion rate for a shorter period of time and a minimum ratio for (Zmax / Ho) as shown in Fig. 10, which leads to accelerating the dam failure process. The dam breaching process is faster with the minimum initial breach depth and maximum initial breach width. In the case of a minimum initial breach depth, the retained head of water in the dam reservoir is high and the crest width at the bottom of the initial breach (L`K) is small, so the erosion point reaches the inflection point rapidly. While in the case of the maximum initial breach width, the erosion perimeter is large.

3.4. The effect of initial breach location

The results of the comparison between the different initial rectangular breach dimensions indicate that the worst initial breach dimension is (Rec 5 h&15b), so the third scenario from this study concentrated on studying the effect of a change in the initial breach location. Three locations were checked to determine the worst case for the dam failure process. The first location is at the center of the dam crest, which was named “Center”, the second location is at mid-distance between the dam center and dam edge, which was named “Mid”, and the third location is at the dam edge, which was named “Edge” as shown in Fig. 11. According to this scenario, the results indicate that the time of peak outflow discharge (tP) is the same in the three cases, but the maximum value of the peak outflow discharge occurs at the center location. The difference in the peak outflow values between the three cases is relatively small as shown in Fig. 12.

The rates of erosion were also studied for the three cases. The results show that the maximum erosion rate occurs at the center location as shown in Fig. 13. By making a comparison between the three cases for the dam storage volume. The results show that the center location had the minimum values for the dam storage volume, which means that a large amount of water has passed to the downstream area as shown in Fig. 14. According to these results, the center location leads to increased erosion rate and accelerated dam failure process compared with the two other cases. Because the erosion occurs on both sides, but in the case of edge location, the erosion occurs on one side.

3.5. The effect of upstream and downstream dam slopes

The results of the comparison between the different initial rectangular breach locations indicate that the worst initial breach location is the center location, so the fourth scenario from this study concentrated on studying the effect of a change in the upstream (Su) and downstream (Sd) dam slopes. Three slopes were checked individually for both upstream and downstream slopes to determine the worst case for the dam failure process. The first slope value is (2H:1V), the second slope value is (2.5H:1V), and the third slope value is (3H:1V). According to this scenario, the results show that the decreasing downstream slope angle leads to increasing time of peak outflow discharge (tP) and decreasing value of peak outflow discharge. The difference in the peak outflow values between the three cases for the downstream slope is 2%, as shown in Fig. 15, but changing the upstream slope has a negligible impact on the peak outflow discharge and its time as shown in Fig. 16.

The rates of erosion were also studied in the three cases for both upstream and downstream slopes. The results show that the maximum erosion rate increases by 6.0% with an increasing downstream slope angle by 4°, as shown in Fig. 17. The results also indicate that the erosion rates aren’t affected by increasing or decreasing the upstream slope angle, as shown in Fig. 18. According to these results, increasing the downstream slope angle leads to increased erosion rate and accelerated dam failure process compared with the upstream slope angle. Because of increasing shear stress applied by water flows in case of increasing downstream slope.

According to all previous scenarios, the dimensionless peak outflow discharge QPQin is presented for a fixed dam height (Ho) and inflow discharge (Qin). Fig. 19 illustrates the relationship between QP∗=QPQin and.

Lr=ho2/3∗bo2/3Ho. The deduced relationship achieves R2=0.96.(17)QP∗=2.2807exp-2.804∗Lr

4. Conclusions

A spatial dam breaching process was simulated by using FLOW-3D Software. The validation process was performed by making a comparison between the simulated results of dam profiles and the dam profiles obtained by Schmocker and Hager [7] in their experimental study. And also, the peak outflow value recorded an error percentage of 12% between the numerical model and the experimental study. This model was used to study the effect of initial breach shape, dimensions, location, and dam slopes on peak outflow discharge, time of peak outflow, and the erosion process. By using the parameters obtained from the validation process, the results of this study can be summarized in eight points as follows.1.

The rectangular initial breach shape leads to an accelerating dam failure process compared with the V-notch.2.

The value of peak outflow discharge in the case of a rectangular initial breach is higher than the V-notch shape by 5%.3.

The time of peak outflow discharge for a rectangular initial breach is shorter than the V-notch shape by 9%.4.

The minimum depth and maximum width for the initial breach achieve maximum erosion rates (increasing breach width, b0, or decreasing breach depth, h0, by 5% from the dam height leads to an increase in the maximum rate of erosion by 11% and 15%, respectively), so the dam failure is rapid.5.

The center location of the initial breach leads to an accelerating dam failure compared with the edge location.6.

The initial breach location has a negligible effect on the peak outflow discharge value and its time.7.

Increasing the downstream slope angle by 4° leads to an increase in both peak outflow discharge and maximum rate of erosion by 2.0% and 6.0%, respectively.8.

The upstream slope has a negligible effect on the dam breaching process.

References

[1]V. SinghDam breach modeling technologySpringer Science & Business Media (1996)Google Scholar[2]Wahl TL. Prediction of embankment dam breach parameters: a literature review and needs assessment. 1998.Google Scholar[3]Z. Alhasan, J. Jandora, J. ŘíhaStudy of dam-break due to overtopping of four small dams in the Czech RepublicActa Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 63 (3) (2015), pp. 717-729 View PDFCrossRefView Record in ScopusGoogle Scholar[4]D. FreadBREACH, an erosion model for earthen dam failures: Hydrologic Research LaboratoryNOAA, National Weather Service (1988)Google Scholar[5]J. Říha, S. Kotaška, L. PetrulaDam Break Modeling in a Cascade of Small Earthen Dams: Case Study of the Čižina River in the Czech RepublicWater, 12 (8) (2020), p. 2309, 10.3390/w12082309 View PDFView Record in ScopusGoogle Scholar[6]E. Goodarzi, L. Teang Shui, M. ZiaeiDam overtopping risk using probabilistic concepts–Case study: The Meijaran DamIran Ain Shams Eng J, 4 (2) (2013), pp. 185-197ArticleDownload PDFView Record in ScopusGoogle Scholar[7]L. Schmocker, W.H. HagerPlane dike-breach due to overtopping: effects of sediment, dike height and dischargeJ Hydraul Res, 50 (6) (2012), pp. 576-586 View PDFCrossRefView Record in ScopusGoogle Scholar[8]J.S. Walder, R.M. Iverson, J.W. Godt, M. Logan, S.A. SolovitzControls on the breach geometry and flood hydrograph during overtopping of noncohesive earthen damsWater Resour Res, 51 (8) (2015), pp. 6701-6724View Record in ScopusGoogle Scholar[9]H. Wei, M. Yu, D. Wang, Y. LiOvertopping breaching of river levees constructed with cohesive sedimentsNat Hazards Earth Syst Sci, 16 (7) (2016), pp. 1541-1551 View PDFCrossRefView Record in ScopusGoogle Scholar[10]Y. Yang, S.-Y. Cao, K.-J. Yang, W.-P. LiYang K-j, Li W-p. Experimental study of breach process of landslide dams by overtopping and its initiation mechanismsJ Hydrodynamics, 27 (6) (2015), pp. 872-883ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar[11]G.G.D. Zhou, M. Zhou, M.S. Shrestha, D. Song, C.E. Choi, K.F.E. Cui, et al.Experimental investigation on the longitudinal evolution of landslide dam breaching and outburst floodsGeomorphology, 334 (2019), pp. 29-43ArticleDownload PDFView Record in ScopusGoogle Scholar[12]J. Zhang, Z.-x. Guo, S.-y. CaoYang F-g. Experimental study on scour and erosion of blocked damWater Sci Eng, 5 (2012), pp. 219-229ArticleDownload PDFView Record in ScopusGoogle Scholar[13]K. Höeg, A. Løvoll, K. VaskinnStability and breaching of embankment dams: Field tests on 6 m high damsInt J Hydropower Dams, 11 (2004), pp. 88-92View Record in ScopusGoogle Scholar[14]H. Hakimzadeh, V. Nourani, A.B. AminiGenetic programming simulation of dam breach hydrograph and peak outflow dischargeJ Hydrol Eng, 19 (4) (2014), pp. 757-768View Record in ScopusGoogle Scholar[15]A.R. Refaiy, N.M. AboulAtta, N.Y. Saad, D.A. El-MollaModeling the effect of downstream drain geometry on seepage through earth damsAin Shams Eng J, 12 (3) (2021), pp. 2511-2531ArticleDownload PDFView Record in ScopusGoogle Scholar[16]Y. Zhu, P.J. Visser, J.K. Vrijling, G. WangExperimental investigation on breaching of embankmentsScience China Technological Sci, 54 (1) (2011), pp. 148-155 View PDFCrossRefView Record in ScopusGoogle Scholar[17]M.-H. Yu, H.-Y. Wei, Y.-J. Liang, Y. ZhaoInvestigation of non-cohesive levee breach by overtopping flowJ Hydrodyn, 25 (4) (2013), pp. 572-579ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar[18]S. Wu, M. Yu, H. Wei, Y. Liang, J. ZengNon-symmetrical levee breaching processes in a channel bend due to overtoppingInt J Sedim Res, 33 (2) (2018), pp. 208-215ArticleDownload PDFView Record in ScopusGoogle Scholar[19]O. Saberi, G. ZenzNumerical investigation on 1D and 2D embankment dams failure due to overtopping flowInt J Hydraulic Engineering, 5 (2016), pp. 9-18View Record in ScopusGoogle Scholar[20]M. Guan, N.G. Wright, P.A. Sleigh2D Process-Based Morphodynamic Model for Flooding by Noncohesive Dyke BreachJ Hydraul Eng, 140 (7) (2014), p. 04014022, 10.1061/(ASCE)HY.1943-7900.0000861 View PDFView Record in ScopusGoogle Scholar[21]W. Wu, R. Marsooli, Z. HeDepth-Averaged Two-Dimensional Model of Unsteady Flow and Sediment Transport due to Noncohesive Embankment Break/BreachingJ Hydraul Eng, 138 (6) (2012), pp. 503-516View Record in ScopusGoogle Scholar[22]Z. Wang, D.S. BowlesThree-dimensional non-cohesive earthen dam breach model. Part 1: Theory and methodologyAdv Water Resour, 29 (10) (2006), pp. 1528-1545ArticleDownload PDFView Record in ScopusGoogle Scholar[23]Říha J, Duchan D, Zachoval Z, Erpicum S, Archambeau P, Pirotton M, et al. Performance of a shallow-water model for simulating flow over trapezoidal broad-crested weirs. J Hydrology Hydromechanics. 2019;67:322-8.Google Scholar[24]C.B. VreugdenhilNumerical methods for shallow-water flowSpringer Science & Business Media (1994)Google Scholar[25]L.A. Larocque, J. Imran, M.H. Chaudhry3D numerical simulation of partial breach dam-break flow using the LES and k–∊ turbulence modelsJ Hydraul Res, 51 (2) (2013), pp. 145-157 View PDFCrossRefView Record in ScopusGoogle Scholar[26]C. Yang, B. Lin, C. Jiang, Y. LiuPredicting near-field dam-break flow and impact force using a 3D modelJ Hydraul Res, 48 (6) (2010), pp. 784-792 View PDFCrossRefView Record in ScopusGoogle Scholar[27]FLOW-3D. Version 11.1.1 Flow Science, Inc., Santa Fe, NM. https://wwwflow3dcom.Google Scholar[28]C.W. Hirt, B.D. NicholsVolume of fluid (VOF) method for the dynamics of free boundariesJ Comput Phys, 39 (1) (1981), pp. 201-225ArticleDownload PDFGoogle Scholar[29]S.V. PatankarNumerical heat transfer and fluid flow, Hemisphere PublCorp, New York, 58 (1980), p. 288View Record in ScopusGoogle Scholar[30]M. Alemi, R. MaiaNumerical simulation of the flow and local scour process around single and complex bridge piersInt J Civil Eng, 16 (5) (2018), pp. 475-487 View PDFCrossRefView Record in ScopusGoogle Scholar

CFD Simulations of Conical Central Baffle Flumes | Journal of Irrigation and Drainage Engineering | Vol 148, No 2

원추형 중앙 배플 수로의 CFD 시뮬레이션

CFD Simulations of Conical Central Baffle Flumes

Abstract

Ankur KapoorAniruddha D. Ghare; and Avinash M. Badar

원추형 중앙 배플 수로는 개방 채널에서 임시 유량 측정을 위한 효과적인 솔루션을 제공합니다. 

원추형 중앙 배플 수로는 원뿔 모양의 장애물 또는 열린 수로의 중심에서 수직으로 향하는 중앙 배플로 구성됩니다. 본 연구에서, 원추형 중앙 배플 수로를 사용하여 개방 채널에서 유량 측정을 위해 이전에 개발된 배출 예측 모델은 더 넓은 적용 범위를 커버하기 위해 직사각형 및 사다리꼴 채널에서 사용하기 위해 실험적으로 재 보정되었습니다. 

제안된 보정 방정식은 FLOW-3D를 사용한 전산유체역학(CFD) 시뮬레이션 결과를 사용하여 확장된 범위의 흐름 및 기하학적 매개변수에 대해 검증되었습니다. 

시뮬레이션 연구는 두 단계로 수행됩니다. 첫 번째 단계는 시뮬레이션의 수면 프로파일과 동일한 배출 및 흐름 조건에 대한 실험 흐름을 비교하여 설정한 정의된 시뮬레이션 문제의 검증입니다. 

두 번째 단계는 무차원 방전 및 측면 경사(중1= 0중1=0, 0.50, 1.00 및 1.50). 80% 미만의 수중에서 방전 예측의 오류는 평균값이 거의 3%로 항상 10% 미만인 것으로 나타났습니다. 

CFD 분석 결과에 따르면 보정된 배출 예측 모델의 사용은 수중 한계 80%까지 권장되었으며, 그 이상에서는 오차가 10% 이상인 것으로 나타났습니다.

Conical central baffle flumes present an effective solution for temporary flow measurements in open channels. A conical central baffle flume consists of a cone-shaped obstruction, or a central baffle, oriented vertically at the center of an open channel. In the present study, a previously developed discharge prediction model for flow measurements in open channels using the conical central baffle flumes has been experimentally recalibrated for use in rectangular and trapezoidal channels to cover a wider application range. The proposed calibration equation has been validated for an extended range of flow and geometrical parameters using the results of computational fluid dynamics (CFD) simulations using Flow-3D. The simulation studies are carried out in two steps. The first step is the validation of the defined simulation problem set up by comparing the water surface profiles of the simulation and experiment flows for the same discharge and flow conditions. The second step is the validation of the proposed discharge prediction model for the extended range (0–0.50) of the dimensionless discharge and side slopes (m1=0m1=0, 0.50, 1.00, and 1.50). It is found that for submergence less than 80%, the error in discharge prediction is always less than 10% with a mean value of nearly 3%. Based on the results of the CFD analysis, the use of the calibrated discharge prediction model has been recommended up to a submergence limit of 80%, beyond which the errors are found to be greater than 10%.

ASCE Library CFD Simulations of Conical Central Baffle Flumes | Journal of Irrigation and Drainage Engineering | Vol 148, No 2
ASCE Library CFD Simulations of Conical Central Baffle Flumes | Journal of Irrigation and Drainage Engineering | Vol 148, No 2
CFD Simulations of Conical Central Baffle Flumes | Journal of Irrigation and Drainage Engineering | Vol 148, No 2
CFD Simulations of Conical Central Baffle Flumes | Journal of Irrigation and Drainage Engineering | Vol 148, No 2
CFD Simulations of Conical Central Baffle Flumes | Journal of Irrigation and Drainage Engineering | Vol 148, No 2
CFD Simulations of Conical Central Baffle Flumes | Journal of Irrigation and Drainage Engineering | Vol 148, No 2
Channel Flow Measurement Using Portable Conical Central Baffle | Journal of Irrigation and Drainage Engineering | Vol 145, No 11
Channel Flow Measurement Using Portable Conical Central Baffle | Journal of Irrigation and Drainage Engineering | Vol 145, No 11
Figure 2. (a) Scanning electron microscopy images of Ti6Al4V powder particles and (b) simulated powder bed using discrete element modelling

Laser Powder Bed에서 Laser Drilling에 의한 Keyhole 형성 Ti6Al4V 생체 의학 합금의 융합: 메조스코픽 전산유체역학 시뮬레이션 대 경험적 검증을 사용한 수학적 모델링

Keyhole Formation by Laser Drilling in Laser Powder Bed Fusion of Ti6Al4V Biomedical Alloy: Mesoscopic Computational Fluid Dynamics Simulation versus Mathematical Modelling Using Empirical Validation

Asif Ur Rehman 1,2,3,*
,† , Muhammad Arif Mahmood 4,*
,† , Fatih Pitir 1
, Metin Uymaz Salamci 2,3
,
Andrei C. Popescu 4 and Ion N. Mihailescu 4

Abstract

LPBF(Laser Powder Bed fusion) 공정에서 작동 조건은 열 분포를 기반으로 레이저 유도 키홀 영역을 결정하는 데 필수적입니다. 얕은 구멍과 깊은 구멍으로 분류되는 이러한 영역은 LPBF 프로세스에서 확률과 결함 형성 강도를 제어합니다.

LPBF 프로세스의 핵심 구멍을 연구하고 제어하기 위해 수학적 및 CFD(전산 유체 역학) 모델이 제공됩니다. CFD의 경우 이산 요소 모델링 기법을 사용한 유체 체적 방법이 사용되었으며, 분말 베드 보이드 및 표면에 의한 레이저 빔 흡수를 포함하여 수학적 모델이 개발되었습니다.

동적 용융 풀 거동을 자세히 살펴봅니다. 실험적, CFD 시뮬레이션 및 분석적 컴퓨팅 결과 간에 정량적 비교가 수행되어 좋은 일치를 얻습니다.

LPBF에서 레이저 조사 영역 주변의 온도는 높은 내열성과 분말 입자 사이의 공기로 인해 분말층 주변에 비해 급격히 상승하여 레이저 횡방향 열파의 이동이 느려집니다. LPBF에서 키홀은 에너지 밀도에 의해 제어되는 얕고 깊은 키홀 모드로 분류될 수 있습니다. 에너지 밀도를 높이면 얕은 키홀 구멍 모드가 깊은 키홀 구멍 모드로 바뀝니다.

깊은 키홀 구멍의 에너지 밀도는 다중 반사와 키홀 구멍 내의 2차 반사 빔의 집중으로 인해 더 높아져 재료가 빠르게 기화됩니다.

깊은 키홀 구멍 모드에서는 온도 분포가 높기 때문에 액체 재료가 기화 온도에 가까우므로 얕은 키홀 구멍보다 구멍이 형성될 확률이 훨씬 높습니다. 온도가 급격히 상승하면 재료 밀도가 급격히 떨어지므로 비열과 융해 잠열로 인해 유체 부피가 증가합니다.

그 대가로 표면 장력을 낮추고 용융 풀 균일성에 영향을 미칩니다.

In the laser powder bed fusion (LPBF) process, the operating conditions are essential in determining laser-induced keyhole regimes based on the thermal distribution. These regimes, classified into shallow and deep keyholes, control the probability and defects formation intensity in the LPBF process. To study and control the keyhole in the LPBF process, mathematical and computational fluid dynamics (CFD) models are presented. For CFD, the volume of fluid method with the discrete element modeling technique was used, while a mathematical model was developed by including the laser beam absorption by the powder bed voids and surface. The dynamic melt pool behavior is explored in detail. Quantitative comparisons are made among experimental, CFD simulation and analytical computing results leading to a good correspondence. In LPBF, the temperature around the laser irradiation zone rises rapidly compared to the surroundings in the powder layer due to the high thermal resistance and the air between the powder particles, resulting in a slow travel of laser transverse heat waves. In LPBF, the keyhole can be classified into shallow and deep keyhole mode, controlled by the energy density. Increasing the energy density, the shallow keyhole mode transforms into the deep keyhole mode. The energy density in a deep keyhole is higher due to the multiple reflections and concentrations of secondary reflected beams within the keyhole, causing the material to vaporize quickly. Due to an elevated temperature distribution in deep keyhole mode, the probability of pores forming is much higher than in a shallow keyhole as the liquid material is close to the vaporization temperature. When the temperature increases rapidly, the material density drops quickly, thus, raising the fluid volume due to the specific heat and fusion latent heat. In return, this lowers the surface tension and affects the melt pool uniformity.

Keywords: laser powder bed fusion; computational fluid dynamics; analytical modelling; shallow
and deep keyhole modes; experimental correlation

Figure 1. Powder bed schematic with voids.
Figure 1. Powder bed schematic with voids.
Figure 2. (a) Scanning electron microscopy images of Ti6Al4V powder particles and (b) simulated powder bed using discrete element modelling
Figure 2. (a) Scanning electron microscopy images of Ti6Al4V powder particles and (b) simulated powder bed using discrete element modelling
Figure 3. Temperature field contour formation at various time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms.
Figure 3. Temperature field contour formation at various time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms.
Figure 4. Detailed view of shallow depth melt mode with temperature field at 0.695 ms
Figure 4. Detailed view of shallow depth melt mode with temperature field at 0.695 ms
Figure 5. Melt flow stream traces formation at various time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms
Figure 5. Melt flow stream traces formation at various time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms
Figure 6. Density evolution of the melt pool at various time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms.
Figure 6. Density evolution of the melt pool at various time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms.
Figure 7. Un-melted and melted regions at different time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms
Figure 7. Un-melted and melted regions at different time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms
Figure 8. Transformation from shallow depth melt flow to deep keyhole formation when laser power increased from (a) 170 W to (b) 200 W
Figure 8. Transformation from shallow depth melt flow to deep keyhole formation when laser power increased from (a) 170 W to (b) 200 W
Figure 9. Stream traces and laser beam multiple reflections in deep keyhole melt flow mode
Figure 9. Stream traces and laser beam multiple reflections in deep keyhole melt flow mode
Figure 10. A comparison between analytical and CFD simulation results for peak thermal distribution value in the deep keyhole formation
Figure 10. A comparison between analytical and CFD simulation results for peak thermal distribution value in the deep keyhole formation
Figure 11. A comparison among experiments [49], CFD and analytical simulations for deep keyhole top width and bottom width
Figure 11. A comparison among experiments [49], CFD and analytical simulations for deep keyhole top width and bottom width

References

  1. Kok, Y.; Tan, X.P.; Wang, P.; Nai, M.L.S.; Loh, N.H.; Liu, E.; Tor, S.B. Anisotropy and heterogeneity of microstructure and
    mechanical properties in metal additive manufacturing: A critical review. Mater. Des. 2018, 139, 565–586. [CrossRef]
  2. Ansari, P.; Salamci, M.U. On the selective laser melting based additive manufacturing of AlSi10Mg: The process parameter
    investigation through multiphysics simulation and experimental validation. J. Alloys Compd. 2022, 890, 161873. [CrossRef]
  3. Guo, N.; Leu, M.C. Additive manufacturing: Technology, applications and research needs. Front. Mech. Eng. 2013, 8, 215–243.
    [CrossRef]
  4. Mohsin Raza, M.; Lo, Y.L. Experimental investigation into microstructure, mechanical properties, and cracking mechanism of
    IN713LC processed by laser powder bed fusion. Mater. Sci. Eng. A 2021, 819, 141527. [CrossRef]
  5. Dezfoli, A.R.A.; Lo, Y.L.; Raza, M.M. Prediction of Epitaxial Grain Growth in Single-Track Laser Melting of IN718 Using Integrated
    Finite Element and Cellular Automaton Approach. Materials 2021, 14, 5202. [CrossRef]
  6. Tiwari, S.K.; Pande, S.; Agrawal, S.; Bobade, S.M. Selection of selective laser sintering materials for different applications. Rapid
    Prototyp. J. 2015, 21, 630–648. [CrossRef]
  7. Liu, F.H. Synthesis of bioceramic scaffolds for bone tissue engineering by rapid prototyping technique. J. Sol-Gel Sci. Technol.
    2012, 64, 704–710. [CrossRef]
  8. Ur Rehman, A.; Sglavo, V.M. 3D printing of geopolymer-based concrete for building applications. Rapid Prototyp. J. 2020, 26,
    1783–1788. [CrossRef]
  9. Ur Rehman, A.; Sglavo, V.M. 3D printing of Portland cement-containing bodies. Rapid Prototyp. J. 2021. ahead of print. [CrossRef]
  10. Popovich, A.; Sufiiarov, V. Metal Powder Additive Manufacturing. In New Trends in 3D Printing; InTech: Rijeka, Croatia, 2016.
  11. Jia, T.; Zhang, Y.; Chen, J.K.; He, Y.L. Dynamic simulation of granular packing of fine cohesive particles with different size
    distributions. Powder Technol. 2012, 218, 76–85. [CrossRef]
  12. Ansari, P.; Ur Rehman, A.; Pitir, F.; Veziroglu, S.; Mishra, Y.K.; Aktas, O.C.; Salamci, M.U. Selective Laser Melting of 316L
    Austenitic Stainless Steel: Detailed Process Understanding Using Multiphysics Simulation and Experimentation. Metals 2021,
    11, 1076. [CrossRef]
  13. Ur Rehman, A.; Tingting, L.; Liao, W. 4D Printing; Printing Ceramics from Metals with Selective Oxidation. Patent No.
    W0/2019/052128, 21 March 2019.
  14. Ullah, A.; Wu, H.; Ur Rehman, A.; Zhu, Y.; Liu, T.; Zhang, K. Influence of laser parameters and Ti content on the surface
    morphology of L-PBF fabricated Titania. Rapid Prototyp. J. 2021, 27, 71–80. [CrossRef]
  15. Ur Rehman, A. Additive Manufacturing of Ceramic Materials and Combinations with New Laser Strategies. Master’s Thesis,
    Nanjing University of Science and Technology, Nanjing, China, 2017.
  16. Wong, K.V.; Hernandez, A. A Review of Additive Manufacturing. ISRN Mech. Eng. 2012, 2012, 1–10. [CrossRef]
  17. Körner, C. Additive manufacturing of metallic components by selective electron beam melting—A review. Int. Mater. Rev. 2016,
    61, 361–377. [CrossRef]
  18. Fayazfar, H.; Salarian, M.; Rogalsky, A.; Sarker, D.; Russo, P.; Paserin, V.; Toyserkani, E. A critical review of powder-based additive
    manufacturing of ferrous alloys: Process parameters, microstructure and mechanical properties. Mater. Des. 2018, 144, 98–128.
    [CrossRef]
  19. Everton, S.K.; Hirsch, M.; Stavroulakis, P.I.; Leach, R.K.; Clare, A.T. Review of in-situ process monitoring and in-situ metrology
    for metal additive manufacturing. Mater. Des. 2016, 95, 431–445. [CrossRef]
  20. Sing, S.L.; An, J.; Yeong, W.Y.; Wiria, F.E. Laser and electron-beam powder-bed additive manufacturing of metallic implants: A
    review on processes, materials and designs. J. Orthop. Res. 2016, 34, 369–385. [CrossRef] [PubMed]
  21. Olakanmi, E.O.; Cochrane, R.F.; Dalgarno, K.W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy
    powders: Processing, microstructure, and properties. Prog. Mater. Sci. 2015, 74, 401–477. [CrossRef]
  22. Mahmood, M.A.; Popescu, A.C.; Hapenciuc, C.L.; Ristoscu, C.; Visan, A.I.; Oane, M.; Mihailescu, I.N. Estimation of clad geometry
    and corresponding residual stress distribution in laser melting deposition: Analytical modeling and experimental correlations.
    Int. J. Adv. Manuf. Technol. 2020, 111, 77–91. [CrossRef]
  23. Mahmood, M.A.; Popescu, A.C.; Oane, M.; Ristoscu, C.; Chioibasu, D.; Mihai, S.; Mihailescu, I.N. Three-jet powder flow
    and laser–powder interaction in laser melting deposition: Modelling versus experimental correlations. Metals 2020, 10, 1113.
    [CrossRef]
  24. King, W.; Anderson, A.T.; Ferencz, R.M.; Hodge, N.E.; Kamath, C.; Khairallah, S.A. Overview of modelling and simulation of
    metal powder bed fusion process at Lawrence Livermore National Laboratory. Mater. Sci. Technol. 2015, 31, 957–968. [CrossRef]
  1. Gong, H.; Rafi, K.; Gu, H.; Starr, T.; Stucker, B. Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion
    additive manufacturing processes. Addit. Manuf. 2014, 1, 87–98. [CrossRef]
  2. Frazier, W.E. Metal additive manufacturing: A review. J. Mater. Eng. Perform. 2014, 23, 1917–1928. [CrossRef]
  3. Panwisawas, C.; Qiu, C.L.; Sovani, Y.; Brooks, J.W.; Attallah, M.M.; Basoalto, H.C. On the role of thermal fluid dynamics into the
    evolution of porosity during selective laser melting. Scr. Mater. 2015, 105, 14–17. [CrossRef]
  4. Yan, W.; Ge, W.; Qian, Y.; Lin, S.; Zhou, B.; Liu, W.K.; Lin, F.; Wagner, G.J. Multi-physics modeling of single/multiple-track defect
    mechanisms in electron beam selective melting. Acta Mater. 2017, 134, 324–333. [CrossRef]
  5. Qian, Y.; Yan, W.; Lin, F. Parametric study and surface morphology analysis of electron beam selective melting. Rapid Prototyp. J.
    2018, 24, 1586–1598. [CrossRef]
  6. Panwisawas, C.; Perumal, B.; Ward, R.M.; Turner, N.; Turner, R.P.; Brooks, J.W.; Basoalto, H.C. Keyhole formation and thermal
    fluid flow-induced porosity during laser fusion welding in titanium alloys: Experimental and modelling. Acta Mater. 2017, 126,
    251–263. [CrossRef]
  7. King, W.E.; Barth, H.D.; Castillo, V.M.; Gallegos, G.F.; Gibbs, J.W.; Hahn, D.E.; Kamath, C.; Rubenchik, A.M. Observation of
    keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J. Mater. Process. Technol. 2014, 214, 2915–2925.
    [CrossRef]
  8. Panwisawas, C.; Sovani, Y.; Turner, R.P.; Brooks, J.W.; Basoalto, H.C.; Choquet, I. Modelling of thermal fluid dynamics for fusion
    welding. J. Mater. Process. Technol. 2018, 252, 176–182. [CrossRef]
  9. Martin, A.A.; Calta, N.P.; Hammons, J.A.; Khairallah, S.A.; Nielsen, M.H.; Shuttlesworth, R.M.; Sinclair, N.; Matthews, M.J.;
    Jeffries, J.R.; Willey, T.M.; et al. Ultrafast dynamics of laser-metal interactions in additive manufacturing alloys captured by in situ
    X-ray imaging. Mater. Today Adv. 2019, 1, 100002. [CrossRef]
  10. Cunningham, R.; Zhao, C.; Parab, N.; Kantzos, C.; Pauza, J.; Fezzaa, K.; Sun, T.; Rollett, A.D. Keyhole threshold and morphology
    in laser melting revealed by ultrahigh-speed x-ray imaging. Science 2019, 363, 849–852. [CrossRef] [PubMed]
  11. Tang, C.; Tan, J.L.; Wong, C.H. A numerical investigation on the physical mechanisms of single track defects in selective laser
    melting. Int. J. Heat Mass Transf. 2018, 126, 957–968. [CrossRef]
  12. Mirkoohi, E.; Ning, J.; Bocchini, P.; Fergani, O.; Chiang, K.-N.; Liang, S. Thermal Modeling of Temperature Distribution in Metal
    Additive Manufacturing Considering Effects of Build Layers, Latent Heat, and Temperature-Sensitivity of Material Properties. J.
    Manuf. Mater. Process. 2018, 2, 63. [CrossRef]
  13. Oane, M.; Sporea, D. Temperature profiles modeling in IR optical components during high power laser irradiation. Infrared Phys.
    Technol. 2001, 42, 31–40. [CrossRef]
  14. Cleary, P.W.; Sawley, M.L. DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper
    discharge. Appl. Math. Model. 2002, 26, 89–111. [CrossRef]
  15. Parteli, E.J.R.; Pöschel, T. Particle-based simulation of powder application in additive manufacturing. Powder Technol. 2016, 288,
    96–102. [CrossRef]
  16. Cao, L. Numerical simulation of the impact of laying powder on selective laser melting single-pass formation. Int. J. Heat Mass
    Transf. 2019, 141, 1036–1048. [CrossRef]
  17. Tian, Y.; Yang, L.; Zhao, D.; Huang, Y.; Pan, J. Numerical analysis of powder bed generation and single track forming for selective
    laser melting of SS316L stainless steel. J. Manuf. Process. 2020, 58, 964–974. [CrossRef]
  18. Lee, Y.S.; Zhang, W. Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by
    laser powder bed fusion. Addit. Manuf. 2016, 12, 178–188. [CrossRef]
  19. Tang, M.; Pistorius, P.C.; Beuth, J.L. Prediction of lack-of-fusion porosity for powder bed fusion. Addit. Manuf. 2017, 14, 39–48.
    [CrossRef]
  20. Promoppatum, P.; Yao, S.C.; Pistorius, P.C.; Rollett, A.D. A Comprehensive Comparison of the Analytical and Numerical
    Prediction of the Thermal History and Solidification Microstructure of Inconel 718 Products Made by Laser Powder-Bed Fusion.
    Engineering 2017, 3, 685–694. [CrossRef]
  21. Rosenthal, D. Mathematical Theory of Heat Distribution During Welding and Cutting. Weld. J. 1941, 20, 220–234.
  22. Chen, Q.; Zhao, Y.Y.; Strayer, S.; Zhao, Y.Y.; Aoyagi, K.; Koizumi, Y.; Chiba, A.; Xiong, W.; To, A.C. Elucidating the Effect
    of Preheating Temperature on Melt Pool Morphology Variation in Inconel 718 Laser Powder Bed Fusion via Simulation and
    Experiment. Available online: https://www.sciencedirect.com/science/article/pii/S2214860420310149#bb8 (accessed on 30
    April 2021).
  23. Ur Rehman, A.; Pitir, F.; Salamci, M.U. Laser Powder Bed Fusion (LPBF) of In718 and the Impact of Pre-Heating at 500 and
    1000 ◦C: Operando Study. Materials 2021, 14, 6683. [CrossRef] [PubMed]
  24. Ur Rehman, A.; Pitir, F.; Salamci, M.U. Full-Field Mapping and Flow Quantification of Melt Pool Dynamics in Laser Powder Bed
    Fusion of SS316L. Materials 2021, 14, 6264. [CrossRef] [PubMed]
  25. Gong, H.; Gu, H.; Zeng, K.; Dilip, J.J.S.; Pal, D.; Stucker, B.; Christiansen, D.; Beuth, J.; Lewandowski, J.J. Melt Pool Characterization
    for Selective Laser Melting of Ti-6Al-4V Pre-alloyed Powder. In Proceedings of the International Solid Freeform Fabrication
    Symposium, Austin, TX, USA, 10–12 August 2014; 2014; pp. 256–267.
  26. Song, B.; Dong, S.; Liao, H.; Coddet, C. Process parameter selection for selective laser melting of Ti6Al4V based on temperature
    distribution simulation and experimental sintering. Int. J. Adv. Manuf. Technol. 2012, 61, 967–974. [CrossRef]
  27. Guo, Q.; Zhao, C.; Qu, M.; Xiong, L.; Hojjatzadeh, S.M.H.; Escano, L.I.; Parab, N.D.; Fezzaa, K.; Sun, T.; Chen, L. In-situ full-field
  28. mapping of melt flow dynamics in laser metal additive manufacturing. Addit. Manuf. 2020, 31, 100939. [CrossRef]
  29. Messler, J.R.W. Principles of Welding: Processes, Physics, Chemistry, and Metallurgy; John Wiley & Sons: New York, NY, USA, 2008;
  30. ISBN 9783527617494.
  31. Khairallah, S.A.; Anderson, A.T.; Rubenchik, A.M.; King, W.E. Laser powder-bed fusion additive manufacturing: Physics of
  32. complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater. 2016, 108, 36–45. [CrossRef]
  33. Ur Rehman, A.; Mahmood, M.A.; Pitir, F.; Salamci, M.U.; Popescu, A.C.; Mihailescu, I.N. Mesoscopic Computational Fluid
  34. Dynamics Modelling for the Laser-Melting Deposition of AISI 304 Stainless Steel Single Tracks with Experimental Correlation: A
  35. Novel Study. Metals 2021, 11, 1569. [CrossRef]
  36. Paul, A.; Debroy, T. Free surface flow and heat transfer in conduction mode laser welding. Metall. Trans. B 1988, 19, 851–858.
  37. [CrossRef]
  38. Aucott, L.; Dong, H.; Mirihanage, W.; Atwood, R.; Kidess, A.; Gao, S.; Wen, S.; Marsden, J.; Feng, S.; Tong, M.; et al. Revealing
  39. internal flow behaviour in arc welding and additive manufacturing of metals. Nat. Commun. 2018, 9, 5414. [CrossRef]
  40. Abderrazak, K.; Bannour, S.; Mhiri, H.; Lepalec, G.; Autric, M. Numerical and experimental study of molten pool formation
  41. during continuous laser welding of AZ91 magnesium alloy. Comput. Mater. Sci. 2009, 44, 858–866. [CrossRef]
  42. Bayat, M.; Thanki, A.; Mohanty, S.; Witvrouw, A.; Yang, S.; Thorborg, J.; Tiedje, N.S.; Hattel, J.H. Keyhole-induced porosities in
  43. Laser-based Powder Bed Fusion (L-PBF) of Ti6Al4V: High-fidelity modelling and experimental validation. Addit. Manuf. 2019,
  44. 30, 100835. [CrossRef]
Solved Aging Dam Dilemma

노후 댐 대책

How Computational Fluid Dynamics Modeling Solved Aging Dam Dilemma

By AyresApril 6, 2021No Comments

Solved Aging Dam Dilemma
Solved Aging Dam Dilemma

Keyword : 3D Hydraulic Modeling,CFD, CFD Model, Computational Fluid Dynamics, Dam Hydraulics, Hydrology structure damage

급격한 변화나 예기치 못한 노후화로 인해 댐에서 복잡한 문제가 발생하는 경우 20세기에 개발된 산업 표준 설계 방정식과 방법론이 많은 경우 올바른 솔루션을 제공할 수는 없습니다. 다행스럽게도 엔지니어들은 적절한 조치나 수리를 적용할 수 있도록 유압 상황을 확인하기 위해 전산유체역학(CFD) 모델을 사용할 수 있게 되었습니다.

About the Expert:

Matthew Hickox, PE, brings civil engineering expertise in stormwater and river design, planning, and construction phase services. His experience is founded on a solid understanding of hydrologic modeling, 1- and 2-dimensional hydraulic modeling, in-stream hydraulic structures, scour protection measures, culvert and bridge hydraulics, and the regulatory environment for stormwater projects.

How Does CFD Work in Practice?

최근의 한 사례에서 하천 수문학 및 지형학은 낮은 수두 전환 댐 주변에서 변경되었습니다. 지난 수십 년 동안 빠르게 발전해 온 도시 지역의 하류에 있는 모래 바닥 하천 시스템에 위치한 댐의 문제는 주변 하천 시스템에서 일어나는 여러 가지 일들로 인해 복잡해졌습니다. 증가하는 도시화는 배출 빈도를 증가시켰을 뿐만 아니라 기본 흐름을 증가시켰습니다. 수리학적으로 가파른 시스템은 일시적인 지류에서 연간 베이스 흐름으로의 변화가 상류가 침식됨에 따라 퇴적물 부하도 증가했음을 의미했습니다.

이 조합은 전환 댐의 하류 수로가 지난 15년 동안 3-4피트 감소했고, 배수가 감소된 정수장 apron에서 속도가 증가했으며 구조물 표면에 마모를 유발하는 퇴적물 하중이 감소했음을 의미합니다. 이러한 문제 중 어느 것도 전환 댐의 원래 설계의 잘못이 아니었지만 변화하는 하천 수문 및 지형학으로 인해 원래 설계자가 예상하지 못한 조건이 발생했습니다.

기존 구조물의 단위 너비 CFD 모델은 기존 현장 조건으로 인해 정수기 계류장에 수압 점프가 형성되지 않았다는 현장 관찰을 확인했습니다. 1).

Figure 1. Existing conditions unit width CFD model results showing velocity, cross section view of structure.
Figure 1. Existing conditions unit width CFD model results showing velocity, cross section view of structure.

설계 표고(열화 전)에서 하류 하류 바닥 표고와 함께 개발된 유사한 단위 너비 CFD 모델은 원래 설계가 정수 유역 계류장과 배수로 전면 근처에서 수압 점프를 생성한다는 것을 보여주었습니다. 이 단위 너비 CFD 모델은 구조에 영향을 미치는 수력학의 가치 있는 검증을 제공하지만 구조 손상이 구조 중간에서 매우 뚜렷하고 다른 영역에서는 거의 손대지 않았기 때문에 이것만으로는 충분하지 않습니다. (그림 2)

Figure 2. Original design conditions unit width CFD model results showing velocity, cross section view of structure. The only difference with Figure 1 is the downstream bed elevation.
Figure 2. Original design conditions unit width CFD model results showing velocity, cross section view of structure. The only difference with Figure 1 is the downstream bed elevation.

전체 기존 조건 CFD 모델은 정수조 앞치마 마모의 범위와 그에 따른 손상을 확인했습니다. (그림 3 및 4)

Figure 3. Existing conditions CFD model results showing velocity streamlines at 2-year event discharge. High velocities are areas of significant abrasion damage, low velocity areas have little or no abrasion damage.
Figure 3. Existing conditions CFD model results showing velocity streamlines at 2-year event discharge. High velocities are areas of significant abrasion damage, low velocity areas have little or no abrasion damage.
Figure 4. Existing conditions shows rebar exposed from significant abrasion damage to stilling basin apron in high velocity areas
Figure 4. Existing conditions shows rebar exposed from significant abrasion damage to stilling basin apron in high velocity areas

이 구조물에 대한 수리를 위한 예비 설계 동안 간단한 분석에 따르면 구조물의 미수를 높이는 것이 방수로 토우 근처의 구조물에 수력학적 점프를 만드는 데 도움이 될 것이며, 이는 정수 유역 계류장과 계류장을 가로지르는 극한 속도를 감소시킬 것입니다. 따라서 구조의 마모를 크게 줄입니다(그림 5 참조). 이 예비 제안 조건 CFD 모델은 엔드 실 높이만 높였습니다. 구조물 하류의 하천 시스템의 상태와 지형은 나머지 설계 수명 동안 구조물의 안정성을 보장하기 위해 모든 최종 설계 조건에 대해 평가되어야 합니다.

Figure 5. Preliminary design check to verify velocities under a raised tailwater condition at a 2-year event discharge. Velocity cross section slices shown.
Figure 5. Preliminary design check to verify velocities under a raised tailwater condition at a 2-year event discharge. Velocity cross section slices shown.

CFD 모델은 설계 상황이 확립된 설계 방정식 및 절차의 한계 내에 깔끔하게 속하지 않을 때 유압을 확인하는 또 다른 도구를 제공합니다. 구조와 유역의 개요에 대해 자세히 설명하는 전체적인 관점은 프로젝트 현장의 현재와 미래의 상태를 평가하는 데 필요합니다. 이 예에서 구조의 설계 및 작동은 원래 설계와 매우 유사하게 유지됩니다. 구조 주변에서 변경된 것은 하천 시스템입니다. CFD는 현장 조건 변경으로 인해 예기치 않은 수리력 및 구조 손상이 발생할 때 복잡한 수리력을 분석할 수 있는 도구 상자의 또 다른 도구를 제공합니다.

CFD 또는 여기 Ayres에서 제공하는 유압 엔지니어링 서비스에 대한 자세한 내용은 Matthew Hickox, PE에게 문의하십시오.

e) 표시 탭에서 결과를 볼 수 있으며 필요한 경우 슬라이스 옵션을 사용하여 특정 영역을 분석할 수 있습니다.

유체 역학 및 응용 유압 분야에서 사용하기 위한 수치 모델링(CFD)을 적용한 가상 실험실 실습 매뉴얼

This manual was developed with the purpose of presenting and executing basic numerical models in the software known as Flow 3D within the virtual laboratories of Fluid Mechanics and Applied Hydraulics, to complement and reinforce what was learned in class, the development of the manual covers a theoretical content and an exemplified práctical part for the handling of the software, besides including some feedback for the students, in order to mark the characteristics that the software has. With the handling of the Flow 3D program, the student will be introduced to the concept of Computational Fluid Dynamics or CFD, and a simple procedure to represent numerically and graphically the behavior of hydraulic structures. The hydraulic structures presented in the laboratory manual are: thin and thick wall orifices, gates with free and submerged discharge, thin and thick wall spillways with free and submerged discharge, WES type spillway, submerged intake with pressure conduction and as a complement, hydrostatic pressures on vertical, curved and inclined walls were added. Each of the mentioned hydraulic structures obtained a práctical verification as a verification within the Flow 3D software, presenting a consistency in the results obtained in both ways.

이 매뉴얼은 Fluid Mechanics 및 Applied Hydraulics의 가상 연구실 내에서 Flow 3D로 알려진 소프트웨어에서 기본 수치 모델을 제시하고 실행하기 위해 개발되었으며, 수업에서 배운 내용을 보완하고 강화하기 위해 개발되었으며, 매뉴얼 개발은 이론적인 내용을 다룹니다. 소프트웨어의 특성을 표시하기 위해 학생들을 위한 일부 피드백을 포함하는 것 외에도 소프트웨어 처리에 대한 내용 및 예시된 실제적인 부분. Flow 3D 프로그램을 다루면서 학생은 전산유체역학(Computational Fluid Dynamics) 또는 CFD의 개념과 수력학적 구조의 거동을 수치 및 그래픽으로 표현하는 간단한 절차를 소개합니다. 실험실 매뉴얼에 제시된 유압 구조는 얇고 두꺼운 벽 오리피스, 자유 및 수중 배출이 있는 수문, 자유 및 수중 배출이 있는 얇고 두꺼운 벽 여수로, WES 유형 방수로, 압력 전도 및 보완으로 수중 유입이 있는 수중 흡입구입니다. 수직, 곡선 및 경사 벽에 추가되었습니다. 언급된 각 수력학적 구조는 Flow 3D 소프트웨어 내에서 검증으로 실제 검증을 획득하여 두 가지 방식에서 얻은 결과의 일관성을 나타냅니다.

Keywords: Flow 3D, numerical modeling, manual, practice, Fluid Mechanics.

e) 표시 탭에서 결과를 볼 수 있으며 필요한 경우 슬라이스 옵션을 사용하여 특정 영역을 분석할 수 있습니다.
e) 표시 탭에서 결과를 볼 수 있으며 필요한 경우 슬라이스 옵션을 사용하여 특정 영역을 분석할 수 있습니다.

REFERENCIAS

Anguisa, M., & Maza, X.(2012). Estudio de los procesos de flujo en una obra de
camptación mediante experimentación de un modelo físico de escala reducida.
[Tesis de grado,Universidad de Cuenca]. Archivo Digital
http://dspace.ucuenca.edu.ec/bitstream/123456789/775/1/ti901.pdf
Arreaga, W., & Mantilla, D. (2016). Determinación de coeficientes de descarga en
orificios circulares, de pared delgada en descarga libre para diferentes
diámetros en modelos físicos. [Tesis de grado,Universidad de Guayaquil].
Archivo Digital
http://repositorio.ug.edu.ec/bitstream/redug/15855/1/ARREAGA_WILLIAM_
MANTILLA_DIEGO_TRABAJO_TITULACIÓN_HIDRÁULICA_DICIEMB
RE_2016.pdf
Arrecis, J., (2018). Evaluación de las carácterísticas del prefil tipo Creager. [Tesis de
grado,Universidad de San Carlos de Guatemala]. Archivo Digital
http://www.repositorio.usac.edu.gt/11372/1/Jared%20Alexander%20V%C3%A
9liz%20Arrecis.pdf
Barba, C. A. B. (2020). Modelación numérica (CDF) del flujo combinado superior e
inferior en una compuerta plana con el program Flow 3D. [Tesis de
Maestria,Escuela Politénica Nacional]. Archivo Digital
Bureau of Reclamation, (2007). Traducida por: Martínez, M., Batanero, A., Martínez,
G., Martínez, O., Gonzáles, O.: Diseño de Presas Peuqeñas(3ra ed). España:
Editorial Bellisco.
Calderon, F. V., Cazares, L. G., & Camacho, F. F. (2017). Dificultades conceptuales
para la comprensión de la Ecuación de Bernoulli. Revista Eureka Sobre
Enseñanza y Divulgación de Las Ciencias, 14(12), 339–352.
Fernández, J.(2012).Técnicas numéricas en ingeniería de fluido: Introducción a la
dinámica de fluidos computacional (CFD) por el método de volúmenes
finitos.Barcelona , España.:Editorial Reverté, S.A.
Flow Science. (2008). Manual de Flow 3D.
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=r
ja&uact=8&ved=2ahUKEwie6p3mpfTsAhWJpFkKHRWpAHcQFjADegQIBh
AC&url=https%3A%2F%2Fwww.researchgate.net%2Fprofile%2FAli_Agha7%
2Fpost%2FSomebody_can_recommend_me_the_tutorials_pdf_video_of_Flow_
3d_v101_software%2Fattachment%2F59d6285e79197b8077986bf3%2FAS%2
53A330000659173377%25401455689696420%2Fdownload%2F%255BFlow_
Science%255D_FLOW3D_V9.3_User_Manual%252C_Volume_1%2528BookZZ.org%2529.pdf&usg
=AOvVaw3ALDHf9jsqn-wDYnhAXNB1
Intituto Internacional de la Investigación de Tecnología Educativa INITE. (2006).
Ecuaciones fundamentales de la hidráulica.
https://gc.scalahed.com/recursos/files/r144r/w226w/Problema_2/Problema2_Hi
draulica_Ecuaciones.pdf
Inciso, C. (2016). Análisis comparativo de las descargas en orificios y boquillas en
laboratorio de Hidráulica de un UPN, Cajamarca. [Tesis de grado,Universidad
Privada del Norte, Cajamarca. Perú]. Archivo Digital
https://repositorio.upn.edu.pe/bitstream/handle/11537/9980/Inciso%20Pajares%
20%20Carlos%20Jonathan.pdf?sequence=1&isAllowed=y

Gutiérrez, Y. (2016). Modelación numérica computacional del diseño de un vertedor
de pared delgada de sección compuesta. [Tesis de grado,Universidad Central
Marta Abreu de las Villas]. Archivo Digital
https://dspace.uclv.edu.cu/bitstream/handle/123456789/6671/Tesis%20Yunior%
20Gutierrez.pdf?sequence=1&isAllowed=y
Guncay, K. (2017). Estudio del desempeño hidráulico del canal multipropósito del
laboratorio de hidráulica y dinámica de fluidos LH&DF del campus Balzay.
[Tesis de grado,Universidad de Cuenca]. Archivo Digital
Jiménez, J., Jiménez J. (2018). Elaboración del modelo físico y la guia metodológica
para la práctica: vertederos de pared delgada, de la asignatura Mecánica de
Fluidos de la Universidad de Azuay. [Tesis de grado,Universidad de Cuenca].
Archivo Digital
http://dspace.uazuay.edu.ec/bitstream/datos/8371/1/14091.pdf
Monroy, M. (2010). Medidores De Flujo En Canales Abiertos. [Tesis de
grado,Universidad de San Carlos de Guatemala]. Archivo Digital
http://biblioteca.usac.edu.gt/tesis/08/08_3165_C.pdf
Penagos, D. F. R. (2012). Diseño y modelación de las uniones soldadas de las
compuertas planas para presas. [Tesis de posgrado,Universidad Libre de
Colombia]. Archivo Digital
https://core.ac.uk/download/pdf/198447125.pdf
Sotelo, A. (1997). Hidráulica General, Volumen 1(18va ed). Balderas 95, México,
D.F.: Editorial Limusa, S.A.
Vega, D. (2004). Vertederos de pared delgada.Centro Andino para la gestión y uso
del agua. Cochabamba.
https://www.academia.edu/6129654/Serie_T%C3%A9cnica_Agua_y_Suelo_N_
1_VERTEDEROS_DE_PARED_DELGADA_Rectangular_y_Triangular
Ven Te Chow. (1994). Hidráulica de canales abiertos. Santafé de Bogotá, Colombia.:
Editorial Martha Edna Suárez R.

Laser Metal Deposition and Fluid Particles

Laser Metal Deposition and Fluid Particles

FLOW-3D는 신규 모듈을 개발 하면서, 입자 모델의 새로운 입자 클래스 중 하나인 유체 입자의 기능에 초점을 맞출 것입니다. 유체 입자는 증발 및 응고를 포함하여 유체 속성을 본질적으로 부여합니다. 유체 입자가 비교적 간단한 강우 모델링(아래의 애니메이션)에서 복잡한 레이저 증착(용접) 모델링에 이르기까지 다양한 사례가 있을 수 있습니다.

Fluid Particles

FLOW-3D에서 유체 입자 옵션이 활성화 되면 사용자는 다양한 직경과 밀도로 다양한 유체 입자 종을 설정할 수 있습니다. 또한 유체 입자의 동력학은 확산 계수, 항력 계수, 난류 슈미트 수, 반발 계수 및 응고된 반발 계수와 같은 특성에 의해 제어 될 수 있습니다. 유체 입자는 열적 및 전기적 특성을 지정할 수 있습니다.

사용자는 유체 입자 생성을 위해 여러 소스를 설정할 수 있습니다. 각 소스는 이전에 정의 된 모든 유체 입자 종 또는 일부 유체 입자 종의 혼합을 가질 수 있습니다. 또한 사용자는 무작위 또는 균일한 입자 생성을 선택하고 입자가 소스에서 방출되는 속도를 정의 할 수 있습니다.

Laser Metal Deposition

레이저 금속 증착은 미세한 금속 분말을 함께 융합하여 3차원 금속 부품을 제작하는 3D printing 공정입니다. 레이저 금속 증착은 항공 우주 및 의료 정형 외과 분야에서 다양한 응용 분야에 적용됩니다. 레이저 금속 증착의 개략도는 아래와 같습니다. 전력 강도 분포, 기판의 이동 속도, 차폐 가스 압력 및 용융/응고, 상 변화 및 열전달과 같은 물리적 제어와 같은 제어 매개 변수가 함께 작동하여 레이저 금속 증착을 효과적인 적층 제조 공정으로 만듭니다.

Setting Up Laser Metal Deposition

새로운 유체 입자 모델은 분말 강도 분포를 할당하고 용융 풀 내부 및 주변에서 발생하는 복잡한 입자 – 기판 상호 작용을 포착하기 때문에 레이저 금속 증착 시뮬레이션을 설정하는 데 없어서는 안될 부분입니다.

일반 사용자들은 FLOW-3D에서 시뮬레이션을 쉽게 설정할 수 있다는 것을 알고 있습니다. 레이저 금속 증착 설정의 경우에도 다른 점은 없습니다. IN-718의 물리적 특성, 형상 생성, 입자 분말 강도 분포, 메쉬 생성 및 시뮬레이션 실행과 같은 모든 설정 단계가 간단하고 사용자 친화적입니다.

IN-718의 물성은 기판과 응고된 유체 입자 모두에 사용됩니다. 40 미크론 유체 입자가 무작위 방식으로 초당 500,000의 속도로 입자 영역에서 계산 영역으로 주입됩니다. 입자 빔은 기판의 운동 방향이 변화 될 때마다 순간적으로 정지되어 용융 풀이 급격한 속도 변화에 적응하도록 합니다.

이렇게 하면 기판에서 입자가 반사되는 것을 방지 할 수 있습니다. 기판이 5초마다 회전하기 때문에 입자 생성 속도는 아래 그림과 같이 5 초마다 0으로 떨어집니다. 기판 이동 자체는 표 형식의 속도 데이터를 사용하여 FLOW-3D에 지정됩니다. 입자는 응고된 유체 입자로 주입되어 고온의 용융 풀에 부딪혀 녹아 용융 풀 유체의 일부가 됩니다.


Substrate velocity

입자 모델 외에도 FLOW-3D의 밀도 평가, 열 전달, 표면 장력, 응고 및 점도 모델이 사용됩니다. 보다 구체적으로, 온도에 따른 표면 장력은 증착된 층의 형태에 큰 영향을 주는 Marangoni 효과를 일으킵니다.

레이저를 복제하기 위해 100 % 다공성 구성 요소가 있는 매우 기본적인 설정이 열원으로 사용됩니다. 100 % 다공성은 구성 요소 주변의 유동 역학에 영향을 미치지 않습니다. 오히려 그것은 특정 영역의 기판에 열을 효과적으로 추가합니다. 이 예비 가열 메커니즘을 자회사인 Flow Science Japan이 개발한 고급 레이저 모듈로 교체하는 작업이 현재 본격적으로 진행 중입니다. 가열 다공성 구성 요소는 각각의 층이 동일한 양의 열을 얻도록 각 층이 증착된 후에 약간 위로 이동됩니다.

Results and discussion

아래 애니메이션은 다중 층 증착을 이용한 레이저 금속 증착 공정을 보여줍니다. 기판이 방향을 변경할 때마다 입자 빔 모션이 일시적으로 중지됩니다. 또한 층이 증착됨에 따라 다공성 열원에서 각 층에 불균등 한 열이 추가되어 새로운 층의 모양이 변경됩니다.  각 층을 증착 한 후에 열원을 위로 이동해야 하는 양을 측정하는 것은 현재의 기능에서는 어렵습니다. 다만  준비중인 Flow Science Japan의 레이저 모듈은 이 문제를 해결할 수 있습니다.

전반적으로 입자 모델은 레이저 금속 증착에서 매우 중요한 공정 매개 변수인 분말 강도 분포를 정확하게 재현합니다. 입자 모델에 대한 이러한 수준의 제어 및 정교함은 적층 제조 분야의 사용자와 공급자 모두가 제조 공정을 미세 조정하는 데 도움이 될 것으로 기대합니다.

주조 분야

Metal Casting

주조제품, 금형의 설계 과정에서 FLOW-3D의 사용은 회사의 수익성 개선에 직접적인 영향을 줍니다.
(주)에스티아이씨앤디에서는  FLOW-3D를 통해 해결한 수많은 경험과 전문 지식을 엔지니어와 설계자에게 제공합니다.

품질 및 생산성 문제는 빠른 시간 안에 시뮬레이션을 통해 예측 가능하므로 낮은 비용으로 해결 할수 있습니다. FLOW-3D는 특별히 주조해석의 정확성 향상을 위한 다양한 설계 물리 모델들을 포함하고 있습니다.

이 모델에는 Lost Foam 주조, Non-newtonian 유체 및 금형의 다이싸이클링 해석에 대한 알고리즘 등을 포함하고 있습니다. 시뮬레이션의 정확성과 주조 제품의 품질을 향상시키고자 한다면, FLOW-3D는 여러분들의 이러한 요구를 충족시키는 제품입니다.

Ladle Pour Simulation by Nemak Poland Sp. z o.o.


관련 기술자료

Fig. 1. (a) Dimensions of the casting with runners (unit: mm), (b) a melt flow simulation using Flow-3D software together with Reilly's model[44], predicted that a large amount of bifilms (denoted by the black particles) would be contained in the final casting. (c) A solidification simulation using Pro-cast software showed that no shrinkage defect was contained in the final casting.

AZ91 합금 주물 내 연행 결함에 대한 캐리어 가스의 영향

TianLiabJ.M.T.DaviesaXiangzhenZhucaUniversity of Birmingham, Birmingham B15 2TT, United KingdombGrainger and Worrall Ltd, Bridgnorth WV15 5HP, United KingdomcBrunel Centre for Advanced Solidification ...
더 보기
Gating System Design Based on Numerical Simulation and Production Experiment Verification of Aluminum Alloy Bracket Fabricated by Semi-solid Rheo-Die Casting Process

Gating System Design Based on Numerical Simulation and Production Experiment Verification of Aluminum Alloy Bracket Fabricated by Semi-solid Rheo-Die Casting Process

반고체 레오 다이 캐스팅 공정으로 제작된 알루미늄 합금 브래킷의 수치 시뮬레이션 및 생산 실험 검증을 기반으로 한 게이팅 시스템 설계 ...
더 보기
Fig. 1. Modified Timelli mold design.

Characterization of properties of Vanadium, Boron and Strontium addition on HPDC of A360 alloy

A360 합금의 HPDC에 대한 바나듐, 붕소 및 스트론튬 첨가 특성 특성 OzenGursoyaMuratColakbKazimTurcDeryaDispinarde aUniversity of Padova, Department of Management and Engineering, ...
더 보기
図3 He ガスストリッパー装置の図と全景.

RIKEN RIBF의 He-Gas 스트리퍼 및 회전 디스크 스트리퍼

He Gas Stripper and Rotating Disk Stripper at the RIKEN RIBF 理研 RI ビームファクトリーにおける He ガスと回転ディスクストリッパー 今尾 浩士 *・長谷部 裕雄 ...
더 보기
그림 3. 수중 4차 횡파 영향

Validation of Sloshing Simulations in Narrow Tanks

This case study was contributed by Peter Arnold, Minerva Dynamics. 이 작업의 목적은 FLOW-3D  를 검증하는 것입니다. 밀폐된 좁은 스팬 직사각형 탱크의 출렁거림 문제에 ...
더 보기
Fig. 1. (a) Dimensions of the casting with runners (unit: mm), (b) a melt flow simulation using Flow-3D software together with Reilly's model[44], predicted that a large amount of bifilms (denoted by the black particles) would be contained in the final casting. (c) A solidification simulation using Pro-cast software showed that no shrinkage defect was contained in the final casting.

AZ91 합금 주물 내 연행 결함에 대한 캐리어 가스의 영향

Effect of carrier gases on the entrainment defects within AZ91 alloy castings Tian Liab J.M.T.Daviesa Xiangzhen ZhucaUniversity of Birmingham, Birmingham ...
더 보기
Proceedings of the 6th International Conference on Civil, Offshore and Environmental Engineering (ICCOEE2020)

Numerical Simulation to Assess Floating Instability of Small Passenger Vehicle Under Sub-critical Flow

미 임계 흐름에서 소형 승용차의 부동 불안정성을 평가하기 위한 수치 시뮬레이션 Proceedings of the International Conference on Civil, Offshore and ...
더 보기
Simulating Porosity Factors

다공성 요인 시뮬레이션

Simulating Porosity Factors https://www.foundrymag.com/issues-and-ideas/article/21926214/simulating-porosity-factorsPamela Waterman 수치 모델링 도구는 일반적이지만 원인을 파악하기가 너무 어렵 기 때문에 코어 가스 블로우 결함을 거의 ...
더 보기
Figure 1. Steady-state shear stress a as a function of shear rate y in Sn-Pb alloy [10).

Numerical Modelling of Semi-Solid Flow under Processing Conditions

처리조건에서의 반고체유동의 수치모델링 David H. Kirkwood and Philip J. WardDepartment of Engineering Materials, University of Sheffield, Sheffield I UK Keywords: ...
더 보기
Fig. 2 Temperature distributions of oil pans (Cycling)

내열마그네슘 합금을 이용한 자동차용 오일팬의 다이캐스팅 공정 연구

A Study on Die Casting Process of the Automobile Oil Pan Using the Heat Resistant Magnesium Alloy 한국자동차공학회논문집 = Transactions ...
더 보기
수자원/수처리/환경분야

수자원 분야

Water & Environmental

FLOW-3D는 작은 하수 처리 시스템부터 대형 수력 발전 프로젝트까지 수처리 및 환경 산업에 직면한 광범위한 문제를 해결할 수 있는 뛰어난 CFD 소프트웨어 입니다. FLOW-3D는 시뮬레이션의 복잡성을 감소시키고 최적의 솔루션에 대해 노력을 집중할 수 있도록 해줍니다. 이를 통해 통해 파악된 가치 있는 통찰력은 귀하의 상당한 시간과 비용을 절약 할 수 있습니다.

실제 지형을 적용하여 3차원 shallow water hybrid model을 이용한 댐 붕괴 시뮬레이션

FLOW-3D는 자유표면 흐름이 있는 수치해석 알고리듬에 의해 유동의 표면이 시공간적으로 변하는 모사를 위한 이상적인 도구라고 할 수 있습니다. 자유 표면은 물과 공기 같은 높은 비율의 밀도 변화를 가지는 유체들 사이의 특정한 경계를 일컫습니다. 자유 표면 흐름을 모델링하는 것은 일반적인 유동방정식과 난류 모델이 결합된 고급 알고리즘을 필요로 합니다. 이 기능은 FLOW-3D로 하여금 침수 구조에 의해 형성된 방수, 수력 점프 및 수면 변화의 흐름의 궤적을 포착 할 수 있습니다.


Bibliography & Technical Data

Dissipating Culvert End Design for Erosion Control Using CFD Platform FLOW-3D Numerical Simulation Modeling

CFD 플랫폼 FLOW-3D 수치 시뮬레이션 모델링을 사용한 침식 제어를 위한 분산 암거 종단 설계

Dissipating Culvert End Design for Erosion Control Using CFD Platform FLOW-3D Numerical Simulation Modeling Saman Mostafazadeh-Fard Graduate Research Assistant, Dept ...
더 보기
Hydrodynamics of tidal bore overflow on the spur dike and its influence on the local scour

Hydrodynamics of tidal bore overflow on the spur dike and its influence on the local scour

Spur 제방의 갯벌 범람과 국지 세굴에 미치는 영향의 유체역학 ZhiyongZhangabCunhongPanabJianZengabFuyuanChenabHaoQincKunHeabKuiZhudEnjinZhaobc Highlights The tidal bore overflow and scour behind the spur ...
더 보기
Propagation of Landslide Surge in Curved River Channel and Its Interaction with Dam

굽은 강둑 산사태의 팽창 전파 및 댐과의 상호 작용, 곡선하천의 산사태 해일 전파 및 댐과의 상호작용

굽은 강둑 산사태의 팽창 전파 및 댐과의 상호 작용 펑후이, 황야지에 수자원 보존 및 환경 학교, Three Gorges University, Yichang, ...
더 보기
The failure propagation of weakly stable sediment: A reason for the formation of high-velocity turbidity currents in submarine canyons

약한 안정 퇴적물의 실패 전파: 해저 협곡에서 고속 탁도 흐름이 형성되는 이유

Yupeng Ren, Yi Zhang, Guohui Xu, Xingbei Xu, Houjie Wang & Zhiyuan Chen  Abstract Abstract해저 협곡에서 탁도의 장거리 이동은 많은 양의 퇴적물을 심해 평원으로 운반할 수 ...
더 보기
Fig. 8. Variation of water surface profile (a) α = 0.1; (b) α = 0.3; (c) α = 0.5; (d) α = 0.7.

Numerical study of the dam-break waves and Favre waves down sloped wet rigid-bed at laboratory scale

WenjunLiuaBoWangaYakunGuobaState Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, ChinabFaculty ...
더 보기
Figure 3. Comparison of water surface profiles over porous media with 12 mm particle diameter in laboratory measurements (symbols) and numerical results (lines).

다공층에 대한 돌발 댐 붕괴의 3차원 유동 수치해석 시뮬레이션

A. Safarzadeh1*, P. Mohsenzadeh2, S. Abbasi31 Professor of Civil Eng., Water Engineering and Mineral Waters Research Center, Univ. of Mohaghegh ...
더 보기
Fig. 6. Experiment of waves passing through a single block of porous medium.

Generalization of a three-layer model for wave attenuation in n-block submerged porous breakwater

NadhiraKarimaaIkhaMagdalenaabIndrianaMarcelaaMohammadFaridbaFaculty of Mathematics and Natural Sciences, Bandung Institute of Technology, 40132, IndonesiabCenter for Coastal and Marine Development, Bandung Institute of ...
더 보기
Figure 9. Turbulent kinetic energy (TKE) contour map on different sections.

Numerical Simulation Research on the Diversion
Characteristics of a Trapezoidal Channel

Yong Cheng, Yude Song, Chunye Liu, Wene Wang * and Xiaotao HuKey Laboratory of Agricultural Soil and Water Engineering in ...
더 보기
Plunge pool scour and bank erosion: assessment of protection measures for Ilarion dam by physical and numerical modelling

Plunge pool scour and bank erosion: assessment of protection measures for Ilarion dam by physical and numerical modelling

Abstract 130m 높이의 Ilarion 댐은 그리스 북부의 Aliakmon 강에 건설되었습니다. 2개의 여수로에는 플런지 풀의 중심을 향해 고속 제트를 빗나가게 하는 ...
더 보기
Figure 1 Mitochondrial Weir Dam

The Three-dimensional Simulation of Granular
Mixtures Weir

Shen Zhen-dong*1, 2, Zhang Yang1, 21Zhejiang Guangchuan Engineering Consultation Co., Ltd., Hangzhou, 310020,Zhejiang, China2Zhejiang Institute of Hydraulics &Estuary, Hangzhou 310020, ...
더 보기


FLOW-3D Water & Environmental Brochure (FSI) Bibliography

Models

Case Studies

Conference Proceedings

레이저 용접 수치해석 (FLOW-3D WELD)

FLOW-3D WELD Products

레이저 용접 수치해석 (FLOW-3D WELD)

FLOW-3D@ WELD는 레이저 용접 공정에 대한 정확한 시뮬레이션 기능을 제공하여 최적화된 공정을 개발하게 합니다. 더 나은 공정 제어를 통해 기공, 열 영향 영역을 최소화하고 미세 구조 변화를 제어할 수 있습니다.

레이저 용접 프로세스를 정확하게 시뮬레이션하기 위해 FLOW-3D@ WELD는 레이저 열원, 레이저-재료 상호 작용, 유체 흐름, 열 전달, 표면 장력, 응고, 다중 레이저 반사 및 위상 변화와 같은 모든 관련 물리 모델을 제공합니다.

Laser Welding

최근에는 뛰어난 생산성과 속도, 낮은 열 입력이 결합되어 기존의 용접 프로세스를 대체하는 레이저 용접 프로세스가 주목 받고 있습니다. 레이저 용접이 제공하는 장점은 용접강도가 좋고, 열 영향 부위가 작으며, 정밀도가 낮고 변형이 적으며, 강철, 알루미늄, 티타늄 및 이종 금속을 포함한 광범위한 금속 및 합금을 용접 할 수 있는 기능이 있습니다.

FLOW-3D@는 레이저 용접 공정에 대한 강력한 통찰력을 제공하고 궁극적으로 프로세스 최적화를 달성하는 데 도움이 됩니다.

보다 나은 프로세스 제어를 통해 기공을 최소화할 수 있습니다. 열 영향부위 및 미세조직을 제어가 가능합니다. FLOW-3D는 자유표면 추적 알고리즘을 통해 매우 복잡한 용접 POOL 시뮬레이션을 해석하는데 매우 적합합니다.

용접 모듈은 레이저 소스에 의해 생성된 Heat flux, 용융 금속에 대한 증발압력, shield gas 효과, 용융 풀의 반동압력 및 다중 레이저 반사와 같은 물리적 모델을 FLOW-3D에 적용하기 위해 개발되었습니다. 키홀 용접과 같은 현실적인 프로세스 시뮬레이션을 위해서는 모든 관련 물리적 현상을 적용하는 것이 중요합니다.

FLOW-3D는 레이저 용접의 conduction and keyhole 방식을 시뮬레이션 할 수 있습니다. 전 세계의 연구원들은 FLOW-3D를 사용하여 용접역학을 분석하고, 공정 매개 변수를 최적화하여 기공을 최소화하며, 레이저 용접공정에서의 dendrite 결정 성장 양상을 예측합니다.

Shallow penetration weld (top left); deep penetration weld with shield gas effects (top right); deep penetration weld with shield gas and evaporation pressure (bottom left); and deep penetration weld with shield gas, evaporation pressure and multiple laser reflections effects (bottom right).

Full Penetration Laser Welding Experiments

한국 카이스트와 독일 BAM은 16K kW레이저를 사용하여 10mm강판에 완전 침투 레이저 용접 실험을 수행하였습니다. CCD카메라의 도움을 받아 완전 용입 레이저 용접으로 형성된 상단 및 하단 용융풀 거동을 확인할 수 있었습니다. 그들은 또한 FLOW-3D 로 용접 공정 해석으로 해석과 실험결과의 경향이 일치하는 것을 알 수 있었습니다.

Experimental setup with CCD cameras observing the top and bottom molten pools
Schematic of computation domain in FLOW-3D

 

Simulation results at the top show melt pool lengths of 8mm and 15mm, whereas experiments indicated melt pool lengths of 7mm and 13mm

Laser Welding Porosity Case Study

General Motors, Michigan, 중국의 상하이 대학교는 용접 공정 변수, 즉 keyhole 용접에서 기공의 발생에 대해 용접 속도 및 용접 각도와 같은 공정 매개 변수가 미치는 영향을 알아보기 위해 협력하여 연구를 진행하였습니다.

레이저 용접된 Al 접합부 단면의 기공을 분석합니다. Keyhole이 유도 된 기공들은 유동 역학으로 인해 발생되고 균열을 일으킬 수 있습니다. 최적화 공정의 매개변수는 이러한 종류의 기공을 완화할 수 있습니다. FLOW-3D를 사용하여 연구원들은 증발 및 반동 압력, 용융풀, 온도에 따른 표면장력 및 Keyhole내의 다중 레이저 반사, 프레넬 흡수를 포함한 모든 중요한 물리적 현상을 설명했습니다.

연구진은 시뮬레이션 모델을 기반으로 Keyhole 용접에서 생성된 기공들의 주요 원인으로 불안정한 Keyhole을 규정하였습니다. 아래 이미지에서 볼 수 있듯이 뒤쪽 용융 풀의 과도한 재순환은 뒤쪽 용융 풀이 앞쪽 용융 풀 경계를 무너뜨리며 기공들을 생성시킵니다. 갇힌 공간이 증가하는 응고 전면에 의해 갇혔을때 기공들이 발생되었습니다.

Distribution of porosity in longitudinal welding sections as seen in simulations (top) and experiments (bottom)

용접 속도가 빠를수록 더 큰 keyhole이 생성되며 이로 인해, 보다 안정적인 keyhole이 생성됩니다. 연구진은 FLOW-3D를 사용하여 용접 속도와 용접 경사각으로 기공들의 생성을 완화시킬 수 있었습니다.


관련 기술자료

Nanoparticle-enabled increase of energy efficiency during laser metal additive manufacturing

레이저 금속 적층 제조 중 나노 입자로 에너지 효율 증가

Minglei Quo bQilin Guo a bLuis IzetEscano a bAli Nabaa a bKamel Fezzaa cLianyi Chen a b 레이저 금속 적층 제조(AM) 공정의 낮은 에너지 효율은 대규모 산업 생산에서 잠재적인 지속 가능성 문제입니다. 레이저 용융을 위한 에너지 효율의 ...
더 보기
Fig. 1. Schematic of lap welding for 6061/5182 aluminum alloys.

알루미늄 합금 겹침 용접 중 용접 형성, 용융 흐름 및 입자 구조에 대한 사인파 발진 레이저 빔의 영향

린 첸 가오 양 미시 옹 장 춘밍 왕Lin Chen , Gaoyang Mi , Xiong Zhang , Chunming Wang *중국 ...
더 보기
Fig. 1 Multi-physics phenomena in the laser-material interaction zone

COMPARISON BETWEEN GREEN AND
INFRARED LASER IN LASER POWDER BED
FUSION OF PURE COPPER THROUGH HIGH
FIDELITY NUMERICAL MODELLING AT MESOSCALE

316-L 스테인리스강의 레이저 분말 베드 융합 중 콜드 스패터 형성의 충실도 높은 수치 모델링 W.E. ALPHONSO1*, M. BAYAT1 and J.H ...
더 보기
Fig 3. Front view of the ejected powder particles due to the plume movement. Powder particles are colored by their respective temperature while trajectory colors show their magnitude at 0.007 seconds.

316-L 스테인리스강의 레이저 분말 베드 융합 중 콜드 스패터 형성의 충실도 높은 수치 모델링

316-L 스테인리스강의 레이저 분말 베드 융합 중 콜드 스패터 형성의 충실도 높은 수치 모델링 M. BAYAT1,* , AND J. H ...
더 보기
Fig. 1. Schematic figure showing the PREP with additional gas flowing on the end face of electrode.

플라즈마 회전 전극 공정 중 분말 형성에 대한 공정 매개변수 및 냉각 가스의 영향

Effects of process parameters and cooling gas on powder formation during the plasma rotating electrode process Yujie Cuia Yufan Zhaoa1 ...
더 보기
Fig. 1. Model geometry with the computational domain, extrusion nozzle, toolpath, and boundary conditions. The model is presented while printing the fifth layer.

재료 압출 적층 제조에서 증착된 층의 안정성 및 변형

Md Tusher Mollah Raphaël 사령관 Marcin P. Serdeczny David B. Pedersen Jon Spangenberg덴마크 공과 대학 기계 공학과, Kgs. 덴마크 링비 ...
더 보기
Fig. 3. Experimental angled top-view setup for laser welding of zinc-coated steel with a laser illumination.

Effect of zinc vapor forces on spattering in partial penetration laser welding of zinc-coated steels

Yu Hao a, Nannan Chen a,b, Hui-Ping Wang c,*, Blair E. Carlson c, Fenggui Lu a,*a Shanghai Key Laboratory of ...
더 보기
Liquid-solid co-printing of multi-material 3D fluidic devices via material jetting

재료 분사를 통한 다중 재료 3D 유체 장치의 액체-고체 공동 인쇄

Liquid-solid co-printing of multi-material 3D fluidic devices via material jetting BrandonHayes,Travis Hainsworth, Robert MacCurdyUniversity of Colorado Boulder, Department of Mechanical ...
더 보기
Figure 3: 3D temperature contours and 2D melt pool cross-sections where the melt pool is stabilized at x=500 µm from the start of the laser initial location for cases where (a) absorptivity = 0.1, Recoil pressure coefficient B = 1 and laser beam radius = 12 µm, (b) absorptivity = 0.1, Recoil pressure coefficient B = 20 and laser beam radius = 12 µm, (c) absorptivity = 0.1, Recoil pressure coefficient B = 1 and laser beam radius = 18 µm, (d) absorptivity = 0.45, Recoil pressure coefficient B = 1 and laser beam radius = 18 µm, (e) absorptivity = 0.45, Recoil pressure coefficient B = 20 and laser beam radius = 12 µm, (f) absorptivity = 0.45, Recoil pressure coefficient B = 20 and laser beam radius = 18 µm.

MULTI-PHYSICS NUMERICAL MODELLING OF 316L AUSTENITIC STAINLESS STEEL IN LASER POWDER BED FUSION PROCESS AT MESO-SCALE

W.E. Alphonso1, M.Bayat1,*, M. Baier 2, S. Carmignato2, J.H. Hattel11Department of Mechanical Engineering, Technical University of Denmark (DTU), Lyngby, Denmark2Department ...
더 보기
Figure 2: Temperature contours and melt pool border lines at different times for the 50 % duty cycle case: (a) - (c) Δtcycle = 400 μs, (d) – (f) Δtcycle = 1000 μs and (g) – (i) Δtcycle = 3000 μs.

MULTIPHYSICS SIMULATION OF THEMRAL AND FLUID DYNAMICS PHENOMENA DURING THE PULSED LASER POWDER BED FUSION PROCESS OF 316-L STEEL

M. Bayat* , V. K. Nadimpalli, J. H. Hattel1Department of Mechanical Engineering, Technical University of Denmark (DTU), Produktionstorvet425, Kgs. 2800, ...
더 보기

업무에 적합한 올바른 CFD 소프트웨어 선택 방법

업무에 적합한 올바른 CFD 소프트웨어 선택 방법

많은 제품들이 모두 자신의 소프트웨어가 가장 적합하다고 말하기 떄문에, 사람들은 자신의 업무에 적합한 CFD 소프트웨어 선택에 어려움을 겪습니다. 그 이유는 유체 흐름 및 열 전달 분석을 위한 소프트웨어 패키지는 다양한 형태로 제공됩니다. 이러한 패키지는 물리적 근사치와 수치적 솔루션 기법이 크게 다르기 때문에 적합한 패키지를 선택하는 것이 어렵습니다.

아래 내용에서 올바른 CFD 소프트웨어를 선택할 때 고려해야 할 중요한 항목을 설명합니다.

Spillway’s tailrace over natural rock

1. 메싱 및 지오메트리

유한 요소 또는 “바디 맞춤 좌표”를 사용하는 솔루션 방법은 유동 영역의 기하학적 구조를 준수하는 해석용 그리드를 생성해야합니다. 정확한 수치 근사를 위해 허용 가능한 요소 크기와 모양으로 이러한 그리드를 생성하는 것은 쉽지 않은 작업입니다. 복잡한 경우 이러한 유형의 그리드 생성에는 며칠 또는 몇주의 노력이 소요될 수 있습니다. 일부 프로그램은 직사각형 그리드 요소만 사용하여 이러한 생성 문제를 제거하려고 시도하지만 흐름 및 열 전달 특성을 변경하는 “계단현상” 경계 문제를 해결해야 합니다. FLOW-3D는 FAVOR ™ (분수 면적 / 체적) 방법을 사용하여 기하학적 특성이 매끄럽게 포함된 생성하기 쉬운 직사각형 그리드를 사용하여 두 문제를 모두 해결합니다. 간단하고 강력한 솔리드 모델러가 FLOW-3D와 함께 패키지로 제공되거나 사용자가 CAD 프로그램에서 기하학적 데이터를 가져올 수 있습니다.

2. 운동량 방정식과 대략적인 흐름 모델

유체 운동량의 정확한 처리는 여러 가지 이유로 중요합니다. 첫째, 복잡한 지오메트리를 통해 유체가 어떻게 흐를지 예측할 수 있는 유일한 방법입니다. 둘째, 유체에 의해 가해지는 동적 힘 (즉, 압력)은 모멘텀을고려하여야만 계산할 수 있습니다. 마지막으로, 열 에너지의 대류 이동을 계산하려면 개별 유체 입자가 다른 유체 입자 및 제한 경계와 관련하여 어떻게 움직이는지를 정확하게 파악할 수 있어야 합니다.

이것은 운동량의 정확한 처리를 의미합니다. 모멘텀의 보존을 대략적으로만 하는 단순화된 흐름 모델은 실제적인 유체 구성과 온도 분포를 예측하는데 사용할 수 없기 때문에 FLOW-3D에서는 사용되지 않습니다.

3. 액체-고체 열 전달 영역

액체와 고체 (예 : 금속-금형) 사이의 열 전달에는 계면 영역의 정확한 추정이 필요합니다. 계단 경계는 이 영역을 과대 평가합니다. 예를 들어, 실린더의 표면적은 27 %의 비율로 과대 평가됩니다. FLOW-3D 전 처리기의 각 제어 볼륨에 대해 FAVOR ™ 방법에 의해 정확한 계면 영역이 자동으로 계산됩니다.

4. 액체-고체 열 전달에 대한 볼륨 효과 제어

제어 볼륨의 크기는 액체 / 고체 인터페이스를 포함하는 제어 볼륨에서도 열이 흐르기 때문에 액체와 고체 사이에서 교환되는 열의 속도와 양에 영향을 미칠 수 있습니다. FLOW-3D에서는 액체-고체 인터페이스에서 열 전달 속도를 계산할 때 체적 크기와 전도도가 고려됩니다.

5. 암시성(Implicitness)과 정확성

비선형 및 결합 방정식에 대한 암시적 방법에는 각 반복에서 under-relaxation 특성이 있는 반복 솔루션 방법이 필요합니다. 이 동작은 일부 상황에서 심각한 오류 (또는 매우 느린 수렴)를 일으킬 수 있습니다 (예 : 큰 종횡비로 제어 볼륨을 사용하거나 실제로 중요하지 않은 효과를 예상하여 암시성이 사용되는 경우).

FLOW-3D에서는 계산 노력FLOW-3D에서는 계산 작업이 덜 필요하기 때문에 가능한 경우 언제나 명시적 수치 방법을 사용하며, 수치 안정성 요구 사항은 정확도 요구 사항과 동일합니다. Implicit vs. Explicit Numerical Methods 문서에서 자세히 알아보세요.

6. 대류 전송을 위한 암시적 수치 방법 (Implicit Numerical Methods)

임의적으로 큰 시간 단계 크기를 계산에 사용할 수 있는 암시적 수치 기법은 CPU 시간을 줄이는데 널리 사용되는 방법입니다. 불행히도 이러한 방법은 대류 해석에 정확하지 않습니다. 암시적 방법은 근사 방정식에 확산 효과를 도입하여 시간 단계 독립성을 얻습니다. 물리적 확산(예 : 열전도)에 수치적 확산을 추가하는 것은 확산 속도만 수정하기 때문에 심각한 문제를 일으키지 않을 수 있습니다. 그러나 대류 과정에 수치 확산을 추가하면 모델링되는 물리적 현상의 특성이 완전히 바뀝니다. FLOW-3D에서 시간 단계는 프로그램에 의해 자동으로 제어되어 정확한 시간 근사치를 보장합니다.

7. 이완 및 수렴 매개 변수 (Relaxation and Convergence Parameters)

암시적 근사를 사용하는 수치 방법은 하나 이상의 수렴 및 이완 매개 변수를 선택해야합니다. 이러한 매개 변수를 잘못 선택하면 발산 또는 수렴 속도가 느려질 수 있습니다. FLOW-3D에서는 하나의 수렴 및 하나의 이완 매개 변수만 사용되며, 두 매개 변수는 프로그램에 의해 동적으로 선택됩니다. 사용자는 수치해석 솔버를 제어하는 ​​매개 변수를 설정할 필요가 없습니다.

8. 자유 표면 추적

액체-가스 인터페이스 (즉, 자유 표면)를 모델링하는 데 사용되는 두 가지 방법이 있습니다. 그 중 하나는 액체 및 가스 영역의 흐름을 계산하고 계면을 유체 밀도의 급격한 변화로 처리하는 것입니다. 일반적으로 밀도 불연속성은 고차 수치 근사를 사용하여 모델링됩니다.

불행히도, 이 치료는 몇몇 그리드 셀에 걸쳐 인터페이스가 매끄럽게 진행되도록 해주며, 그러한 인터페이스에 일반적으로 존재하는 접선 유속의 급격한 변화는 설명하지 않습니다. 또한 이 기법은 가스가 계산 영역으로 유입되는 액체로 대체될 경우 탈출 포트 또는 가스의 싱크로도 보완해야 합니다. 또한 이러한 방법은 일반적으로 유체의 비압축성을 만족시키기 위해 더 많은 노력을 기울여야 합니다.  가스 영역은 거의 균일한 압력 조정을 통해 솔루션 수렴 속도를 늦추는 경향이 있기 때문에 이러한 현상이 발생합니다.

FLOW-3D에서는 다른 기술인 VOF (Volume-of-Fluid) 방법이 사용됩니다. 이것은 인터페이스가 단계 불연속으로 긴밀하게 유지되는 진정한 3 차원 인터페이스 추적 체계입니다. 또한 선택적 표면 장력을 포함하여 수직 및 접선 응력 경계 조건이 인터페이스에 적용됩니다. 가스 영역은 사용자가 모델에 포함되도록 요청하지 않는 한 계산되지 않습니다.

Laser Metal Deposition and Fluid Particles

FLOW-3D의 신규 모듈 개발을 하면서, 입자 모델의 새로운 입자 부류 중 하나인 유체 입자의 기능에 초점을 맞출 것입니다. 유체 입자는 증발 및 응고를 포함하여 유체 속성을 본질적으로 부여합니다. 유체 입자가 비교적 간단한 강우 모델링에서 복잡한 레이저 증착(용접) 모델링에 이르기까지 다양한 사례가 있을 수 있습니다.

Fluid Particles

FLOW-3D에서 유체 입자 옵션이 활성화 되면 사용자는 다양한 직경과 밀도의 다양한 유체 입자 종을 설정할 수 있습니다. 또한 유체 입자의 동력학은 확산 계수, 항력 계수, 난류 슈미트 수, 반발 계수 및 응고 된 반발 계수와 같은 특성에 의해 제어 될 수 있습니다. 유체 입자는 열적 및 전기적 특성을 부여 받을 수도 있습니다.

사용자는 유체 입자 생성을 위해 여러 소스를 설정할 수 있습니다. 각 소스는 이전에 정의 된 모든 유체 입자 종 또는 일부 유체 입자 종의 혼합을 가질 수 있습니다. 또한 사용자는 무작위 또는 균일 한 파티클 생성을 선택하고 파티클이 소스에서 추출되는 속도를 정의 할 수 있습니다.

Laser Metal Deposition

레이저 금속 증착은 함께 미세한 금속 분말을 융합하여 입체 금속 부품을 제작하는 3D printing 공정이다. 레이저 금속 증착는 항공 우주 및 의료 정형 외과 분야에서 다양한 응용 프로그램을 찾습니다. 레이저 금속 증착의 개략도는 아래와 같습니다. 전력 밀도 분포, 기판의 이동 속도, 차폐 가스 압력 및 용융 / 응고, 상 변화 및 열전달과 같은 물리적 제어와 같은 제어 매개 변수가 함께 작동하여 레이저 금속 증착을 효과적인 첨가제 제조 공정으로 만듭니다.

 

Setting Up Laser Metal Deposition

새로운 유체 입자 모델은 분말 강도 분포를 할당하고 용융 풀 주변에서 발생하는 복잡한 입자 – 기판 상호 작용을 포착하기 때문에 레이저 금속 증착 시뮬레이션을 설정하는 데 없어서는 안될 부분입니다.

일반의 사용자들은 FLOW-3D에서 시뮬레이션을 쉽게 설정할 수 있다는 점을 계속 알고 있을 것입니다. 레이저 금속 증착 설정의 경우에도 다른 점은 없습니다. IN-718의 물리적 특성, 형상 생성, 입자 분말 강도 분포, 메쉬 생성 및 시뮬레이션 실행과 같은 모든 설정 단계는 직접적이고 사용자 친화적입니다.

IN-718의 물성은 기판과 응고 된 유체 입자 모두에 사용됩니다. 40 미크론 유체 입자가 무작위 방식으로 초당 500,000의 속도로 입자 영역에서 계산 영역으로 주입됩니다. 입자 빔은 기판의 운동 방향이 변화 될 때마다 순간적으로 정지되어 용융 풀이 급격한 속도 변화에 적응하도록 합니다. 이렇게 하면 기판에서 입자가 반사되는 것을 방지 할 수 있습니다. 매 5 초마다 기판이 회전하기 때문에 입자 생성 속도는 아래 그림과 같이 5 초마다 0으로 떨어집니다. 기판 이동 자체는 표 형식의 속도 데이터를 사용하여 FLOW-3D에 지정됩니다. 입자는 응고 된 유체 입자로 주입되어 고온의 용융 풀에 부딪혀 녹아 용융 풀 유체의 일부가 됩니다.


Substrate velocity

입자 모델 외에도 FLOW-3D의 밀도 평가, 열 전달, 표면 장력, 응고 및 점도 모델이 사용됩니다. 보다 구체적으로, 온도에 따른 표면 장력은 증착 된 층의 형태에 큰 영향을주는 Marangoni 효과를 일으킵니다.

레이저를 복제하기 위해 100 % 다공성 구성 요소가있는 매우 기본적인 설정이 열원으로 사용됩니다. 100 % 다공성은 구성 요소 주변의 유동 역학에 영향을 미치지 않습니다. 오히려 그것은 특정 영역의 기판에 열을 효과적으로 부가한다. 이 예비 가열 메커니즘을 자회사인 Flow Science Japan이 개발 한 고급 레이저 모듈로 교체하는 작업이 현재 본격적으로 진행 중입니다. 가열 다공성 구성 요소는 각각의 층이 동일한 양의 열을 얻도록 각 층이 증착 된 후에 약간 위로 이동됩니다.

Results and discussion

아래 애니메이션은 다중 층 증착을 이용한 레이저 금속 증착 공정을 보여줍니다. 기판이 방향을 바꿀 때마다 입자 빔 동작의 일시적인 정지를 확인하십시오. 또한, 층이 증착됨에 따라, 새로운 층의 형상은 다공성 열원으로부터 각 층에 열의 불균등 한 첨가로 인해 변화됩니다. 각 층을 증착 한 후에 열원을 위로 이동해야 하는 양을 측정하는 것은 현재의 기능에서는 어렵습니다. 다만  준비중인 Flow Science Japan의 레이저 모듈은 이 문제를 해결할 수 있습니다.

전반적으로 입자 모델은 레이저 금속 증착에서 매우 중요한 공정 매개 변수 인 분말 강도 분포를 정확하게 재현합니다. 입자 모델과 같은 수준의 제어와 정교함은 첨가제 제조 분야의 사용자와 공급자 모두가 제조 프로세스를 미세 조정하는 데 도움이 될 것으로 기대합니다.

레이저 용접 수치해석(FLOW WELD)

Laser Welding

뛰어난 생산성과 속도, 낮은 열 입력이 결합되어 기존의 용접 프로세스를 대체하는 레이저 용접 프로세스가 있습니다. 레이저 용접이 제공하는 장점은 용접강도가 좋고, 열 영향 부위가 작으며, 정밀도가 높고 변형이 적으며 강철, 알루미늄, 티타늄 및 이종 금속을 포함한 광범위한 금속 및 합금을 용접 할 수 있는 기능이 있습니다.

FLOW-3D는 레이저 용접 공정에 대한 강력한 통찰력을 제공하고 궁극적으로 프로세스 최적화를 달성하는 데 도움이 됩니다. 보다 나은 프로세스 제어를 통해 다공성을 최소화할 수 있습니다. 열 영향부위 및 마이크로-구조를 제어합니다. FLOW-3D는 자유표면 추적 알고리즘으로 인해 매우 복잡한 용접 풀 시뮬레이션을 해석하는데 적합합니다. 용접의 추가 모듈은 레이저 소스에 의해 생성된 Heat flux, 용융 금속에 대한 증발압력, shield gas효과, 용융 풀의 반동압력 및 다중 레이저반사와 같은 물리적 모델을 FLOW-3D에 통합하기 위해 개발되었습니다. Keyhole 용접과 같은 현실적인 프로세스 시뮬레이션을 위해서는 모든 관련 물리적 현상을 포착하는 것이 중요합니다.

FLOW-3D는 레이저 용접의 conduction and keyhole 방식을 시뮬레이션 할 수 있습니다. 전 세계의 연구원들은 FLOW-3D를 사용하여 용접역학을 분석하고, 공정 매개 변수를 최적화하여 다공성을 최소화하며, 레이저 용접공정의 수지결정 성장을 예측합니다.

Shallow penetration weld (top left); deep penetration weld with shield gas effects (top right); deep penetration weld with shield gas and evaporation pressure (bottom left); and deep penetration weld with shield gas, evaporation pressure and multiple laser reflections effects (bottom right).

Full Penetration Laser Welding Experiments

한국 카이스트와 독일 BAM은 16KW레이저를 사용하여 10mm강판에 완전 침투 레이저 용접 실험을 수행하였습니다. CCD카메라의 도움을 받아 완전 용입 레이저 용접으로 형성된 상단 및 하단 용융지 역학을 포착할 수 있었습니다. 그들은 또한 FLOW-3D공정을 시뮬레이션하여 해석과 실험결과가 경향이 일치하는 것을 나타내었습니다.

Experimental setup with CCD cameras observing the top and bottom molten pools
 
Simulation results at the top show melt pool lengths of 8mm and 15mm, whereas experiments indicated melt pool lengths of 7mm and 13mm
 
 
 
 
Schematic of computation domain in FLOW-3D

 

Laser Welding Porosity Case Study

General Motors, Michigan, 중국의 상하이 대학교는 공정변수, 즉 keyhole 용접에서 다공성 발생 에 대해 용접속도 및 용접각도와 같은 공정 매개 변수가 미치는 영향을 이해하기 위해 협력하여 연구를 진행하였습니다.

 
레이저 용접된 Al 접합부 단면의 다공성을 용접합니다. Keyhole 유도 된 다공성은 유동 역학으로 인해 발생되고 균열을 일으킬 수 있습니다. 최적화 공정의 매개변수는 이러한 종류의 다공성을 완화할 수 있습니다. FLOW-3D를 사용하여 연구원들은 증발 및 반동 압력, 용융풀, 온도에 따른 표면장력 및 Keyhole내의 다중 레이저 반사, 프레넬 흡수를 포함한 모든 중요한 물리적 현상을 설명했습니다.

연구진은 시뮬레이션 모델을 기반으로 Keyhole용접에서 유도된 다공성의 주요 원인으로 불안정한Keyhole을 규정하였습니다. 아래 이미지에서 볼 수 있듯이 뒤쪽 용융 풀의 과도한 재순환은 뒤쪽 용융 풀이 앞쪽 용융 풀 경계를 무너뜨리며 다공성을 초래시킵니다. 갇힌 공간이 증가하는 응고 전면에 의해 포착되었을 때 다공성이 유도되었습니다.

용접 속도가 빠를수록 더 큰 keyhole이 생성되며 이로 인해보다 안정적인 keyhole이 구성됩니다. 연구진은 FLOW-3D를 사용하여 높은 용접 속도와 큰 용접 경사각으로 다공성을 완화시킬 수 있다고 예측했습니다.

 
 
Distribution of porosity in longitudinal welding sections as seen in simulations (top) and experiments (bottom)

용접분야 활용

Conduction 용접

하이브리드 레이저 용접

깊은 용접 레이저용접

레이저 적층 공법

TIG 용접

이종소재 레이저 용접

Aerial Landslide Generated Wave Simulations

Aerial Landslide Generated Wave Simulations

Aerial Landslide Generated Wave(ALGW)는 수역에 영향을 미치는 빠른 슬라이드의 결과이다. 이것은 암석에 의해 생성된 작은 파도 이거나, 3000만 입방 미터의 암석으로 인한 500m를 초과하는 파도 일 수도 있다.
공학적 관점에서 보면 ALGW는 근접한 해안을 따라 인간이 거주하는 인구/자산이 있는 수역에서 발생할 때 큰 관심을 가진다. 여기서 파동이 발생하면 해안선이 파손되고 홍수가 날수 있으며, 댐붕괴로 인한 사망까지 일으킬 수 있다(Müller-Salzburg, 1987). 결과적으로, ALGW에 의해 야기되는 최대 파도 상승을 예측하는 것은 경제적, 환경적, 안전상의 이유로 매우 중요합니다.
안타깝게도 분석적인 솔루션이 없는 매우 복잡한 문제로, 유체 역학적인 측면에서뿐만 아니라 지질학적인 관점(즉, 크기/기하학적인 슬라이드의 밀도 프로파일)에서도 마찬가지입니다. 이와 같이, 대부분의 현장 별 ALGW 최대 파형 예측은 확장된 물리적 모델을 사용하여 평가되었다. 일부는 전산유체역학(CFD) 소프트웨어를 기반으로 할 수도 있지만 비용이 많이 들며, 특히 풀 스케일 3차원 문제의 경우 정확성에 대한 논쟁의 대상이 되고 있습니다.
그러나 컴퓨터 하드웨어와 CFD소프트웨어가 계속 발전함에 따라 이제 CFD를 사용하여 ALGW를 실제로 시뮬레이션할 수 있게 되었습니다. 이와 같이 본 연구는 고 충실도의 물리적 모델 데이터를 FLOW-3D와 비교하여 ALGW를 CFD시뮬레이션을 검증하기 위한 지속적인 노력으로 진척시키는 것을 목표로 한다.
다음 절에서는 실제 및 수치 모델 설정에 대한 개요를 제공한다. 뿐만 아니라, 생성된 데이터와 간단한 비교를 제공한다.

Experimental Setup
물리적 실험은 Northwest Hydraulic Consultants 노스 밴쿠버, 캐나다 실험실에서 만들어졌고 실험을 거쳤다. 그것은 30° 경사의 서쪽 벽을 가진 0.5미터 폭의 수로, 45°의 경사진 동쪽 벽, 그리고 두개의 북쪽과 남쪽 측면에 수직 벽, 그리고 1.025m의 수평 단면을 가진 0.610m 너비의 수로로 구성되었다. ALGW를 생성하고 평가하기 위해, 45° 경사 노즈를 가진 0.177×0.305×0.305m의 아크릴 박스를 사용한 6초 시험을 사용했다.
이 슬라이드를 놓았을 때, 슬라이드는 (중력에 의해) 0.607m 심층수에 충돌하기 전에 서쪽 경사면에서 0.768m 아래로 이동했다. 그 후, 물을 통해 또 다른 1.05m를 이동하여 정지 블록을 치기 시작했다. 슬라이드 가속 및 변위뿐만 아니라 파고 높이는 6 초 실험 전체에 대해 100Hz의 주파수에서 기록되었다. 이 데이터를 수집하는 데 사용 된 도구는 다음과 같다.

  • 컴퓨터화된 데이터 수집 시스템
  • 슬라이드의 시간에 따라 이동 한 거리를 측정하는 문자열 가변 저항기
  • 슬라이드 가속도를 측정하는 1 차원 가속도계
  • 물의 주요 본체 내에 배치 된 3 개의 1 차원 커패시턴스 웨이브 – 프로브
  • 웨이브 런업을 캡처하기 위해 동쪽 경사면을 따라 사용되는 저항 사다리꼴 웨이브 프로브
  • 타이밍 스위치 캡처 슬라이드 릴리스 시간 사용
  • 흑백 비디오 카메라

테스트가 반복 가능하고 오작동이 발생하지 않았는지 확인하기 위해 테스트를 5 번 반복하고 각 장비에 대해 평균을 구했다.

Numerical Model Setup
물리적 실험의 전산화 된 3 차원 모델을 제작한 STL 파일을 FLOW-3D로 가져왔다. 일단 FLOW-3D에 들어간 3D 모델은 약 1,370 만개의 0.0075m 크기의 정사각형 셀로 이산화되었고, 벽을 둘러싸고있는 6 개의면 각각에 ‘wall’경계가 사용되었다.
슬라이드를 일반적인 이동 물체로 설정하고, 물리 모델로부터 수집 된 데이터(즉, 가속 및 변위 데이터의 후 처리)에 기초하여 속도가 주어졌다. 동서면 경사면의 표면 거칠기는 0.00025m으로 설정되었다. 모델링 된 유체는 293k의 물이었고, 동적 RNG 난류 모델이 기본 설정과 함께 사용되었다(implicit pressure solve; and, explicit viscous stress, free surface pressure, advection, moving object/fluid coupling solvers).
물리적 모델과 마찬가지로 FLOW-3D는 6 초의 시간을 시뮬레이트하지만 실제 모델과 같이 매 0.01 초가 아닌 0.02 초마다 데이터를 저장하였다(데이터 관리 관점에서 선택하였음).

Result

FLOW-3D 실험의 결과는 그림에 나와 있다. 4개의 웨이브 각각에 대해 실험 시간 동안 파고를 보여준다. 이와 같이, 제시된 파도 높이는 단순히 flume을 통해 전파되는 파도의 구현(즉, 2 차원의 경우에서 볼 수있는 것)이 아니라 오히려 여러 파도의 상호 작용으로 인한 파도 높이를 초래한다.

  • 슬라이드 충격시 발생하는 충격파(1차 신호)
  • 슬라이드 뒤의 충격파 충돌(2차 신호)
  • 북쪽, 동쪽, 서쪽 및 남쪽 벽에서의 웨이브 반사(3차 신호)

또한 길이 방향의 FLOW-3D 데이터(중심선에서)를 실제 모델 비디오 위에 겹쳐서 자유 표면의 FLOW-3D 글로벌 예측을 평가했다. 이것은 아래의 동영상에서 볼 수 있다.
그림과 위의 비디오를 보면 FLOW-3D 데이터가 웨이브 프로브 1, 2 및 3의 경우 물리적 데이터를 매우 잘 일치한다는 것을 알 수 있다. 하지만 웨이브 프로브 4에 대해서는 정확도가 떨어진다.
FLOW-3D 시간 데이터와 관련된 오류는 각 웨이브 프로브에 대한 RMSE (root-mean-square-error)를 취하여 평가된다.

Discussion
이 조사에서 실제 모델의 고 충실도 데이터는 ALGW로 최대 파도 상승에 대한 FLOW-3D 예측과 비교되었다. RNG 모형의 기본 설정을 사용하여 FLOW-3D는 주요 수역 내에서 파고를 정확하게 재현 할 수 있었다. 그러나 최대 파동은 약 43%가 넘었다.
최대 웨이브 런업을 줄이기 위해 몇 가지 대안인 FLOW-3D 물리 설정이 사용되었다. 그러나 43 % 이하로 떨어지는 것은 불가능했다. 이러한 대체 시뮬레이션에 대한 주목할만한 관찰은 다음과 같다.

  • first-order momentum advection scheme의 0.01m 메쉬는 최대 파동 상승 오차가 96% 인 반면 동일하게 0.0075m 메쉬의 오차는 130%였다. 그러나 second-order로 변경하면 0.01 m 및 0.0075 m 메시의 경우 각각 55% 및 43%의 오차가 발생한다. 또한 메쉬 셀 크기를 0.005m으로 줄이면 80%의 오차가 발생한다.
  • 이 테스트 케이스에서 가장 중요한 매개 변수는 momentum advection scheme이다. 평균적으로 second-order를 사용하면 first-order대비 오차가 약 50% 감소한다.
  • FLOW-3D의 MP 버전을 사용하여 0.005m의 메쉬 셀 크기를 사용해야 한다. 해석 시 CPU 시간은 33 시간이었다. 비교를 위해 FLOW-3D의 SMP 버전은 0.0075m의 메쉬 셀 크기로 시뮬레이션을 실행하는 데 26시간이 필요했지만 MP 버전은 4.5시간 밖에 걸리지 않았다.

[1] 3.5GHz 8 코어 AMD FX-8320 프로세서에서 약 6초의 시뮬레이션 시간이 대략 26시간 소요되었다.

References
Fritz, H. M., Hager, W. H., & Minor, H.-E. (2004). Near Field Characteristics of Landslide Generated Impulse Waves. Journal of Waterway, Port, Coastal & Ocean Engineering, 130(6), 287–302. doi:10.1061/(ASCE)0733-950X(2004)130:6(287)
Miller, D. J. (1960). Giant Waves in Lituya Bay Alaska (Geological Survey Professional Paper No. 354-C). Washington, D.C.: United States Government Printing Office.
Müller-Salzburg, L. (1987). The Vajont catastrophe— A personal review. Engineering Geology, 24(1–4), 423–444. doi:10.1016/0013-7952(87)90078-0

CFD Predicts Air Gap and Wave Impact Loads of Offshore Structures

CFD Predicts Air Gap and Wave Impact Loads of Offshore Structures

 

This article was contributed by Anup Paul & Chris Matice of Stress Engineering Services1.

 

연안 플랫폼 갑판 아래의 간격은 중요한 설계 매개변수이며 극한 설계 조건에서 요구되는 최소 공극 격차에 의해 결정된다. 반잠수재 및 다리구조물과 같은 구조의 경우 최소 공극과 갑판에 대한 충격영향을 예측하는 것은 어렵다.

Dynamic response of a spar with a 12 m wave

파도는 공극 설계에서 설명되어야 하는 플랫폼 다리와 상호작용으로 인해 상당한 비선형적 행동과 파장의 증폭을 보여준다. 극한의 환경에서 음의 공기 격차가 발생하는 경우 갑판 충격하중에 대한 예측이 중요해집니다. 석유 및 가스 생산이 더 깊은 물로 이동함에 따라 부양 장치가 필요하며 갑판 높이는 중량 및 안정성 요구사항에 따라 제한됩니다. 극한의 환경에서 이러한 구조물의 성능을 예측하는 데 있어 자유 표면 및 갑판 충격하중에 대한 구조물의 성능을 정확하게 예측하는 것이 중요합니다.

Computational Fluid Dynamics

CFD(전산 유체 역학)방법은 다양한 산업 분야에 광범위하게 적용되어 유체 흐름과 열 전달 특성을 나타냅니다. CFD는 VOF(Volume of Fluid) 모델과 함께 연안 플랫폼의 공극 차이와 파장 영향 부하를 예측하는데 효과적으로 사용할 수 있습니다.  VOF방법은 자유 표면 형상과 비선형 파형 동작을 정확하게 예측하는 데 사용할 수 있습니다. 부유식 시스템의 경우 CFD를 FEA와 결합하여 파형 충격 시 플랫폼의 동적 및 구조적 반응을 예측할 수 있습니다.

Wave Interaction of a SPAR Platform

Figure 1: Dynamic response of SPAR

그림 1은 10m및 20m파에 대한 SPAR의 동적 응답을 보여 줍니다. 두 파 모두 20초의 주기를 가지며 선형 파형 경계 조건을 사용하여 생성됩니다. SPAR은 질량 중심에 6도의 자유도를 가진 강체로 모형화 됩니다. 그림 2는 질량의 SPAR중심의 수직 변위를 보여 줍니다. 그림 3은 파형 상호 작용으로 인한 SPAR의 수평 방향 힘을 보여 줍니다.

Wave Impact on a Gravity Based Structure (GBS)

그림 4는 중력 기반 구조 (GBS)의 갑판에 대한 파동의 영향을 보여줍니다. 평균 수심은 151.1 미터이고 초기 공극은 21.7 미터입니다. 이 파도는 40 미터의 높이와 17 초의 주기를 가집니다. 그림 5는 상단부분의 웨이브 충격으로 인한 GBS의 수평 및 수직력을 보여줍니다. 힘의 급상승은 그림 4에서와 같이 GBS 전면의 파동과 갑판 상단의 2 차 충격에 대한 초기 충격과 일치합니다.

Figure 2: Vertical displacement of SPAR

Figure 3: Horizontal forces on SPAR   

Figure 4: Wave impact on GBS      .

Figure 5: Force history of GBS due to wave impact on deck

 

Anup Paul is an Associate with SES, specializing in fluid dynamic analysis of structures, products and processes

Chris Matice, Ph.D., P.E. is a Principal with SES and heads their Process Technology Group, specializing in fluid dynamic and structural evaluation of plant and equipment.

Learn more about the power and versatility of modeling coastal and maritime applications with FLOW-3D>

금속 3D 프린팅 / 적층 제조 수치해석(FLOW-3D Weld/DEM)

Binder jetting

바인더 분사 시뮬레이션은 모세관 힘의 영향을 받는 파우더 베드의 바인더 확산 및 침투에 대한 통찰력을 제공합니다. 공정 매개 변수와 재료 특성은 증착 및 확산 공정에 직접적인 영향을 미친다.

Direct energy deposition

FLOW-3D의 Particle 모델을 사용하여 직접 에너지 축적 프로세스를 시뮬레이션 할 수도 있습니다. 고체 기판에 분말 주입 속도와 열유속 입사를 지정함으로써, 고체 입자는 용융풀을 통해 질량, 추진력 및 에너지를 추가할 수 있습니다. 다음 동영상에서는 용융풀을 통해 고체 금속 입자가 주입되고 이어서 기판에 용융풀응 응고시키는 과정이 관찰됩니다.


관련 기술자료

Nanoparticle-enabled increase of energy efficiency during laser metal additive manufacturing

레이저 금속 적층 제조 중 나노 입자로 에너지 효율 증가

Minglei Quo bQilin Guo a bLuis IzetEscano a bAli Nabaa a bKamel Fezzaa cLianyi Chen a b 레이저 금속 적층 제조(AM) 공정의 낮은 에너지 효율은 대규모 산업 생산에서 잠재적인 지속 가능성 문제입니다. 레이저 용융을 위한 에너지 효율의 ...
더 보기
Fig. 1. Schematic of lap welding for 6061/5182 aluminum alloys.

알루미늄 합금 겹침 용접 중 용접 형성, 용융 흐름 및 입자 구조에 대한 사인파 발진 레이저 빔의 영향

린 첸 가오 양 미시 옹 장 춘밍 왕Lin Chen , Gaoyang Mi , Xiong Zhang , Chunming Wang *중국 ...
더 보기
Fig. 1 Multi-physics phenomena in the laser-material interaction zone

COMPARISON BETWEEN GREEN AND
INFRARED LASER IN LASER POWDER BED
FUSION OF PURE COPPER THROUGH HIGH
FIDELITY NUMERICAL MODELLING AT MESOSCALE

316-L 스테인리스강의 레이저 분말 베드 융합 중 콜드 스패터 형성의 충실도 높은 수치 모델링 W.E. ALPHONSO1*, M. BAYAT1 and J.H ...
더 보기
Fig 3. Front view of the ejected powder particles due to the plume movement. Powder particles are colored by their respective temperature while trajectory colors show their magnitude at 0.007 seconds.

316-L 스테인리스강의 레이저 분말 베드 융합 중 콜드 스패터 형성의 충실도 높은 수치 모델링

316-L 스테인리스강의 레이저 분말 베드 융합 중 콜드 스패터 형성의 충실도 높은 수치 모델링 M. BAYAT1,* , AND J. H ...
더 보기
Fig. 1. Schematic figure showing the PREP with additional gas flowing on the end face of electrode.

플라즈마 회전 전극 공정 중 분말 형성에 대한 공정 매개변수 및 냉각 가스의 영향

Effects of process parameters and cooling gas on powder formation during the plasma rotating electrode process Yujie Cuia Yufan Zhaoa1 ...
더 보기
Fig. 1. Model geometry with the computational domain, extrusion nozzle, toolpath, and boundary conditions. The model is presented while printing the fifth layer.

재료 압출 적층 제조에서 증착된 층의 안정성 및 변형

Md Tusher Mollah Raphaël 사령관 Marcin P. Serdeczny David B. Pedersen Jon Spangenberg덴마크 공과 대학 기계 공학과, Kgs. 덴마크 링비 ...
더 보기
Fig. 3. Experimental angled top-view setup for laser welding of zinc-coated steel with a laser illumination.

Effect of zinc vapor forces on spattering in partial penetration laser welding of zinc-coated steels

Yu Hao a, Nannan Chen a,b, Hui-Ping Wang c,*, Blair E. Carlson c, Fenggui Lu a,*a Shanghai Key Laboratory of ...
더 보기
Liquid-solid co-printing of multi-material 3D fluidic devices via material jetting

재료 분사를 통한 다중 재료 3D 유체 장치의 액체-고체 공동 인쇄

Liquid-solid co-printing of multi-material 3D fluidic devices via material jetting BrandonHayes,Travis Hainsworth, Robert MacCurdyUniversity of Colorado Boulder, Department of Mechanical ...
더 보기
Figure 3: 3D temperature contours and 2D melt pool cross-sections where the melt pool is stabilized at x=500 µm from the start of the laser initial location for cases where (a) absorptivity = 0.1, Recoil pressure coefficient B = 1 and laser beam radius = 12 µm, (b) absorptivity = 0.1, Recoil pressure coefficient B = 20 and laser beam radius = 12 µm, (c) absorptivity = 0.1, Recoil pressure coefficient B = 1 and laser beam radius = 18 µm, (d) absorptivity = 0.45, Recoil pressure coefficient B = 1 and laser beam radius = 18 µm, (e) absorptivity = 0.45, Recoil pressure coefficient B = 20 and laser beam radius = 12 µm, (f) absorptivity = 0.45, Recoil pressure coefficient B = 20 and laser beam radius = 18 µm.

MULTI-PHYSICS NUMERICAL MODELLING OF 316L AUSTENITIC STAINLESS STEEL IN LASER POWDER BED FUSION PROCESS AT MESO-SCALE

W.E. Alphonso1, M.Bayat1,*, M. Baier 2, S. Carmignato2, J.H. Hattel11Department of Mechanical Engineering, Technical University of Denmark (DTU), Lyngby, Denmark2Department ...
더 보기
Figure 2: Temperature contours and melt pool border lines at different times for the 50 % duty cycle case: (a) - (c) Δtcycle = 400 μs, (d) – (f) Δtcycle = 1000 μs and (g) – (i) Δtcycle = 3000 μs.

MULTIPHYSICS SIMULATION OF THEMRAL AND FLUID DYNAMICS PHENOMENA DURING THE PULSED LASER POWDER BED FUSION PROCESS OF 316-L STEEL

M. Bayat* , V. K. Nadimpalli, J. H. Hattel1Department of Mechanical Engineering, Technical University of Denmark (DTU), Produktionstorvet425, Kgs. 2800, ...
더 보기

금속 3D 프린팅 수치해석

CFD가 처음이신가요?

소개

본 자료는 전산유체역학(CFD)를 처음 접하시는 분들의 이해를 돕기 위해 작성되었습니다. 보통 열유동해석, 그냥 유동해석 또는 수치해석 중에서 유체를 다루는 해석이라고 쉽게 이해할 수 있겠습니다.

A general description of how to think about computational fluid dynamics (CFD) is given in the article, Simulating Fluid Flow with Free Surfaces. This article introduces the idea of reducing a simulation region into small volume control elements for which algebraic equations are constructed to describe the conservation of mass, momentum and energy exchanges with neighboring elements. Additionally, a simple method is introduced for a means of describing the motion of free fluid interfaces within the region of control elements.

내용 안내

전산 유체 역학 (CFD)의 개념에 대한 일반적인 설명은 자유 표면의 유동 시뮬레이션에 기술되어 있습니다. 이 절에서는 시뮬레이션 영역을 미소 체적 제어 요소로 세분화하는 아이디어를 적용하여, 볼륨 컨트롤 요소에 대해 질량 및 운동량 보존, 인접 요소와의 에너지 교환을 설명하는 대수 방정식이 구성됩니다. 또한 컨트롤 요소의 영역 내에서 자유롭게 유체 계면의 운동을 설명하는 간단한 방법도 설명되어 있습니다.

Also for beginners, the article, What you should know about CFD modeling when selecting a CFD software, contains brief summaries of a variety of issues that are important considerations for constructing numerical solutions to fluid dynamic problems. Many of these issues, such as meshing, geometry representation, implicit versus explicit numerical methods and relaxation/convergence parameters are explored in greater detail in the remaining articles in CFD-101.

또한 CFD를 처음 접하시는 분들을 위해, CFD 소프트웨어 선택시 전산 유체 역학 모델링에 대해 알아야 할 것에는 유체 역학 문제에서 수치 해석을 수행하기위한 중요하게 고려하는 다양한 이슈에 대한 내용도 포함되어 있습니다. 이러한 많은 이슈에는 메쉬, 기하 형상 표현, implicit 방법과 explicit 방법, relaxation/convergence 매개 변수 등이 있는데 본 CFD-101에 상세히 설명되어 있습니다.

CFD 해석 | 격자(Mesh) 공간

본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 이용하실 때 참고하시기 바랍니다.

Modeling Local Bridge Scour

Modeling Local Bridge Scour

 

This article was contributed by Ying-Chieh Lin, Hervé Capart, and Der-Liang Young of Department of Civil Engineering and Hydrotech Research Institute/National Taiwan University in Taipei, Taiwan, the winner of the 2nd Flow Science 30th Anniversary Simulation Contest.

 

대만의 태풍 Sinlaku(2008년 9월)와 Morakot(2009년 8월)은 대만 강을 가로지르는 많은 교량의 심각한 취약성을 드러냈습니다. 여러 현장에서 교량 세굴 실패를 관찰한 결과 대만의 설계조건에 대해 특별한 특징이 많으며, 연구조사가 아닌 전형적인 조건의 범위를 벗어났음을 알 수 있었습니다. 대만 특유의 조건으로는 강수량 및 토사량의 급격한 변화, 빠른 침식률, 공동 암반 및 충적 조절, 하천 및 교량과 같은 하천을 따라 지어진 다양한 유형의 구조물 간의 간섭 등이 있습니다.

 

The Houfeng Bridge Failure in Taiwan

2008년 9월의 Houfeng다리의 붕괴는 대만의 몇 가지 특정한 우려 사안을 설명하는 데 사용될 수 있습니다. 강의 침전물의 엄청난 변화로 수면의 급수공급 파이프 라인에 접근합니다. 대만 수도공사는 송유관을 보호하기 위해 콘크리트 구조물을 건설했는데, 이로 인해 수면이 갑자기 떨어졌습니다. 구체적인 과정을 이해하기 위해, 3D 해석 시뮬레이션과 실험데이터를 결합하여 결과를 찾았습니다. 국지적인 입자들과 지역 흐름 패턴의 3차원 모델링은 FLOW-3D를 사용하여 수행되었습니다. 현실적인 시나리오를 정의하고 모델링 결과를 확인하기 위해 수치 모델링의 데이터를 소규모 실험의 데이터와 비교합니다. (척도 계수 1:200).

Figure 1. Collapse of Houfeng Bridge in September 2008, due to general scour of the Tachia river reach

Figure 2a. Local scour due to the exposure of a sill immediately upstream of the bridge. Photo courtesy of Zoe Lin, TBS.

Figure 2b. Local sill (water supply pipeline) exposed by river degradation, which caused a sudden drop in water surface and enhanced scour immediately downstream of the sill, where the failed bridge piles were located.

 

Three Dimensional Local Flow Modeling

3차원 전산유체역학 모델은 FLOW-3D로 시뮬레이션이 됩니다. 급수 관로 끝에 존재하는 강력한 수직 속도 성분 때문에 3차원 시뮬레이션이 필요합니다. 큰 수직 속도변화로 인해 흐름 패턴이 복잡해지고 교량 교각 앞에서 절삭이 강화됩니다. 이 연구의 주요 목표 중 하나는 현지의 Sill의 영향력을 보여 주는 것 입니다. 이를 위해 상수도관 및 교각 주변에 미세한 mesh(0.25cm3)를 설정합니다. 또한 이 모델에 사용된 총 그리드 수는 약 70만개입니다.

Pure water시뮬레이션에서 FLOW-3D결과는 소규모 실험 데이터와 양호한 일치성을 보여줍니다. 그림 3과 같이 첫 번째 교각 전면에 있는 수위표면은 높이변화를 보여줍니다. 예측된 데이터는 측정된 데이터와 유사하며, 우리는 세가지 실험이 동일한 구성을 가지고 있더라도 수면 높이에 변화가 있음을 관찰할 수 있습니다. The non-bedrock시뮬레이션은 유입 및 유출 경계 조건을 검증하고 시뮬레이션을 위한 적절한 그리드 해상도를 선택하는 데 중요한 역할을 합니다. 이 문제는 간단하고 쉽기 때문입니다. 이러한 결과로부터 모델은 현재의 퇴적물 정련 모델이 실험 결과와 유사 함을 보여 주며 강바닥 높이의 급격한 변화로 인한 침전물 침식에 대한 정보를 얻을 수 있습니다.

Figure 3. The pure water simulation results (left). The water height evolution in front of the first pier to compare with measured data (right).

 

Testing Numerical Modeling Approaches

 

다음 단계는 수치 모델링 접근법을 시험하는 것이었고, 소규모 모델을 사용한 실험이 수행될 것입니다. 우리는 지역 교량 세굴 구성의 실험적 분석을 설정하고 광학 및 음향 영상 기법을 사용하여 측정하여 실험값을 얻을 계획입니다. 예를 들어 Houfeng Bridge붕괴를 시뮬레이션하기 위해 설계된 예비 실험 및 FLOW-3D모델링의 결과를 아래에 제시합니다. (그림 4참조). 그림 5는 기반암의 분포를 보여 주며 색상 등고선은 침전물 높이 평균변화율을 나타냅니다. 이러한 결과로부터 모델은 현재의 퇴적물 모델이 실험결과와 유사함을 보여주며 강바닥 높이의 급격한 변화로 인한 침전물 침식에 대한 정보를 얻을 수 있습니다.

 

FLOW-3D Simulation Results                             

Figure 4. Views of a preliminary small-scale experiment and FLOW-3D modeling performed to simulate the conditions of the Houfeng Bridge collapse. (a)T=10 sec.; (b)T=20 sec.; (c)T=40 sec.; (d)T=80 sec.

 

시뮬레이션 결과는 현지 구조물(상수도 파이프 라인)이 물의 흐름과 기반암의 침식에 어떻게 영향을 미치는지를 분명히 보여 줍니다. 또한, 수치 모델은 유동장 속도, 수면 높이 및 변화의 침전물 높이를 예측했습니다. 모델은 alluvial river 지역 구조물의 다른 형태와 크기를 시뮬레이션하는데 사용될 수도 있습니다. 이 정보는 지역별 강의 변화가 교량 교각, 웨어 하우스 및 하천 코스에 어떤 영향을 미치는지 이해하는 데 도움이 될 것입니다.

(a)    (b)

(c)  (d)

Figure 5. The packed sediment surface and the color contours present the packed sediment height average rate of change. (a)T=10 sec.; (b)T=20 sec.; (c)T=40 sec.; (d)T=80 sec.

기술자료

Bibliography / 논문, 기고 등

학계와 다른 연구자들을 위해서 FLOW-3D의 결과를 포함한 광범위한 기술논문의 참고 문헌을 제공합니다.
FLOW-3D 를 사용하면 우리의 많은 고객들이 직면했던 문제를 통해 해결책을 찾을 수 있습니다. 우리는 귀하의 생산성을 높이고, 제품 경쟁력과 새로운 디자인을 만들 수 있도록 도울 수 있습니다.우리의 분야별 적용사례 참고가 귀하의 문제 해결에 도움이 되시길 바랍니다.

CFD-101 / 전산유체역학의 개요

본 자료는 Flow Science Inc를 설립한 CW (Tony) Hirt 박사에 의해 작성된 것으로 전산 유체 역학의 개요를 소개하고 관련된 다양한 문제의 개요를 제공합니다. 자세한 내용은 CFD-101을 참고하시기 바랍니다.

FLOW-3D Technical Note

본 자료는 FLOW-3D 를 사용하는 중에 도움이 될만한 기술적인 자료들을 제공하고 있습니다. 본 자료는 지속적으로 보완하고 업데이트 되는 자료입니다.

FLOW-3D 물리모델링 Capabilities

FLOW-3D 모델링에 대해 궁금하신가요? FLOW-3D 솔버의 강력한 물리모델 및 수치모델에 대해 알아보세요. FLOW-3D를 이용하여 특정 문제를 해결할 수 있는지 확인하고자 할 경우 당사의 엔지니어링 팀에 언제든지 문의하시기 바랍니다.

FLOW-3D 해석용컴퓨터 선택 가이드

본 자료는 Flow Science의 IT 매니저 Matthew Taylor가 작성한 자료를 기반으로 STI C&D에서 일부 자료를 보완한 자료입니다. 본 자료를 통해 FLOW-3D 사용자는 최상의 해석용 컴퓨터를 선택할 때 도움을 받을 수 있을 것으로 기대합니다.

수치해석을 하는 엔지니어들은 사용하는 컴퓨터의 성능에 무척 민감합니다. 그 이유는 수치해석을 하기 위해 여러 준비단계와 분석 시간들이 필요하지만 당연히 압도적으로 시간을 소모하는 것이 계산 시간이기 때문일 것입니다.

이 자료는 FLOW-3D 제품을 효과적으로 사용하기 위한 하드웨어 선택에 대해 사전에 검토되어야 할 내용들에 대해 자세히 설명합니다. 그리고 실행 중인 시뮬레이션 유형에 따라 다양한 구성에 대한 몇 가지 아이디어를 제공합니다.

Conference Proceedings

제품 개발회사인 Flow Science, Inc의 홈페이지의 Conference proceedings은 전세계 사용자들로 부터 FLOW-3D의 다양한 활용 방안에 대해 배울 수 있는 좋은 자료를 찾아보실 수 있습니다.기타 궁금하신 사항은 아래 연락처로 연락주시기 바랍니다.   연락처 : 02-2026-0455
이메일 : flow3d@stikorea.co.kr

FLOW-3D 제품소개

About FLOW-3D


FLOW-3D

FLOW-3D 개발 회사

Flow Science Inc Logo Green.svg
IndustryComputational Fluid Dynamics Software
Founded1980
FounderDr. C.W. “Tony” Hirt
Headquarters
Santa Fe, New Mexico, USA
United States
Key people
Dr. Amir Isfahani, President & CEO
ProductsFLOW-3D, FLOW-3D CAST, FLOW-3D AM, FLOW-3D CLOUD, FlowSight
ServicesCFD consultation and services

FLOW-3D 개요

FLOW-3D는 미국 뉴멕시코주(New Mexico) 로스알라모스(Los Alamos)에 있는 Flow Scicence, Inc에서 개발한 범용 전산유체역학(Computational Fluid Dynamics) 프로그램입니다. 로스알라모스 국립연구소의 수치유체역학 연구실에서 F.Harlow, B. Nichols 및 T.Hirt 등에 의해 개발된 MAC(Marker and Cell) 방법과 SOLA-VOF 방식을 기초로 하여, Hirt 박사가 1980년에 Flow Science, Inc사를 설립하여 계속 프로그램을 발전시켰으며 1985년부터 FLOW-3D를 전세계에 배포하였습니다.

유체의 3차원 거동 해석을 수행하는데 사용되는 CFD모형은 몇몇 있으나, 유동해석에 적용할 물리모델 선정은 해석의 정밀도와 밀접한 관계가 있으므로, 해석하고자 하는 대상의 유동 특성을 분석하여 신중하게 결정하여야 합니다.

FLOW-3D는 자유표면(Free Surface) 해석에 있어서 매우 정확한 해석 결과를 제공합니다. 해석방법은 자유표면을 포함한 비정상 유동 상태를 기본으로 하며, 연속방정식, 3차원 운동량 보전방정식(Navier-Stokes eq.) 및 에너지 보존방정식 등을 적용할 수 있습니다.

FLOW-3D는 유한차분법을 사용하고 있으며, 유한요소법(FEM, Finite Element Method), 경계요소법(Boundary Element Method)등을 포함하여 자유표면을 포함하는 유동장 해석(Fluid Flow Analysis)에서 공기와 액체의 경계면을 정밀하게 표현 가능합니다.

유체의 난류 해석에 대해서는 혼합길이 모형, 난류 에너지 모형, RNG(Renormalized Group Theory)  k-ε 모형, k-ω 모형, LES 모형 등 6개 모형을 적용할 수 있으며, 자유표면 해석을 위하여 VOF(Volume of Fluid) 방정식을 사용하고, 격자 생성시 사용자가 가장 쉽게 만들 수 있는 직각형상격자는 형상을 더욱 정확하게 표현하기 위해 FAVOR(Fractional Area Volume Obstacle Representation) 기법을 각 방정식에 적용하고 있습니다.

FLOW-3D는 비압축성(Incompressible Fluid Flow), 압축성 유체(Compressible Fluid Flow)의 유동현상 뿐만 아니라 고체와의 열전달 현상을 해석할 수 있으며, 비정상 상태의 해석을 기본으로 합니다.

FLOW-3D v12.0은 모델 설정을 간소화하고 사용자 워크 플로우를 개선하는 GUI(그래픽 사용자 인터페이스)의 설계 및 기능에 있어 중요한 변화를 가져왔습니다. 최첨단 Immersed Boundary Method는 FLOW-3Dv12.0솔루션의 정확도를 높여 줍니다. 다른 특징적인 주요 개발에는 슬러지 안착 모델, 2-유체 2-온도 모델, 사용자가 자유 표면 흐름을 훨씬 더 빠르게 모델링 할 수 있는 Steady State Accelerator등이 있습니다.

물리 및 수치 모델

Immersed Boundary Method

힘과 에너지 손실에 대한 정확한 예측은 솔리드 바디 주변의 흐름과 관련된 많은 엔지니어링 문제를 모델링하는 데 중요합니다. FLOW-3D v12.0의 릴리스에는 이러한 문제 해결을 위해 설계된 새로운 고스트 셀 기반 Immersed Boundary Method (IBM)가 포함되어 있습니다. IBM은 내부 및 외부 흐름을 위해 벽 근처 해석을 위해 보다 정확한 솔루션을 제공하여 드래그 앤 리프트 힘의 계산을 개선합니다.

Two-field temperature for the two-fluid model

2유체 열 전달 모델은 각 유체에 대한 에너지 전달 공식을 분리하도록 확장되었습니다. 이제 각 유체에는 고유한 온도 변수가 있어 인터페이스 근처의 열 및 물질 전달 솔루션의 정확도를 향상시킵니다. 인터페이스에서의 열 전달은 시간의 표 함수가 될 수 있는 사용자 정의 열 전달 계수에 의해 제어됩니다.

슬러지 침전 모델 / Sludge settling model

중요 추가 기능인 새로운 슬러지 침전 모델은 도시 수처리 시설물 응용 분야에 사용하면 수처리 탱크 및 정화기의 고형 폐기물 역학을 모델링 할 수 있습니다. 침전 속도가 확산된 위상의 방울 크기에 대한 함수인 드리프트-플럭스 모델과 달리, 침전 속도는 슬러지 농도의 함수이며 기능적인 형태와 표 형태로 모두 입력 할 수 있습니다.

Steady-state accelerator for free surface flows

이름이 암시하듯이, 정상 상태 가속기는 안정된 상태의 솔루션에 대한 접근을 가속화합니다. 이는 작은 진폭의 중력과 모세관 현상을 감쇠하여 이루어지며 자유 표면 흐름에만 적용됩니다.

꾸준한 상태 가속기

Void particles

보이드 입자가 버블 및 위상 변경 모델에 추가되었습니다. 보이드 입자는 항력과 압력 힘을 통해 유체와 상호 작용하는 작은 기포의 역할을 하는 붕괴된 보이드 영역을 나타냅니다. 주변 유체 압력에 따라 크기가 변경되고 시뮬레이션이 끝난 후 최종 위치는 공기 침투 가능성을 나타냅니다.

Sediment scour model

침전물의 정확성과 안정성을 향상시키기 위해 침전물의 운반과 침식 모델을 정밀 조사하였다. 특히, 침전물 종에 대한 질량 보존이 크게 개선되었습니다.

Outflow pressure boundary condition

고정 압력 경계 조건에는 이제 압력 및 유체 비율을 제외한 모든 유량이 해당 경계의 상류에 있는 흐름 조건을 반영하는 ‘유출’ 옵션이 포함됩니다. 유출 압력 경계 조건은 고정 압력 및 연속성 경계 조건의 혼합입니다.

Moving particle sources

시뮬레이션 중에 입자 소스는 이동할 수 있습니다. 시간에 따른 변환 및 회전 속도는 표 형식으로 정의됩니다. 입자 소스의 운동은 소스에서 방출 된 입자의 초기 속도에 추가됩니다.

Variable center of gravity

중력 및 비 관성 기준 프레임 모델에서 시간 함수로서의 무게 중심의 위치는 외부 파일의 표로 정의할 수 있습니다. 이 기능은 연료를 소모하는 로켓을 모델링하고 단계를 분리할 때 유용합니다.

공기 유입 모델

가장 간단한 부피 기반 공기 유입 모델 옵션이 기존 질량 기반 모델로 대체되었습니다.  질량 기반 모델은 부피와 달리 주변 유체 압력에 따라 부피가 변화하는 동안 흡입된 공기량이 보존되기 때문에 물리학적 모델입니다.

Air entrainment model in FLOW-3D v12.0

Tracer diffusion / 트레이서 확산

유동 표면에서 생성된 추적 물질은 분자 및 난류 확산 과정에 의해 확산될 수 있으며, 예를 들어 실제 오염 물질의 거동을 모방합니다.

모델 설정

시뮬레이션 단위

이제 온도를 포함하여 단위계 시스템을 완전히 정의해야 합니다. 표준 단위 시스템이 제공됩니다. 또한 사용자는 선택한 옵션에서 질량, 시간 및 길이 단위를 정의하여 편리하며, 사용자 정의된 단위를 사용할 수 있습니다. 사용자는 또한 압력이 게이지 단위로 정의되는지 절대 단위로 정의되는지 여부를 지정해야 합니다. 기본 시뮬레이션 단위는 Preferences(기본 설정)에서 설정할 수 있습니다. 단위를 완벽하게 정의하면 FLOW-3D는 물리적 수량에 대한 기본 값을 정의하고 범용 상수를 설정할 수 있으므로 사용자가 필요로 하는 작업량을 최소화할 수 있습니다.

Shallow water model

얕은 물 모델에서 매닝의 거칠기

Manning의 거칠기 계수는 지형 표면의 전단 응력 평가를 위해 얕은 물 모델에서 구현되었습니다. 표면 결함의 크기를 기반으로 기존 거칠기 모델을 보완하며이 모델과 함께 사용할 수 있습니다. 표준 거칠기와 마찬가지로 매닝 계수는 구성 요소 또는 하위 구성 요소의 속성이거나 지형 래스터 데이터 세트에서 가져올 수 있습니다.

메시 생성

하단 및 상단 경계 좌표의 정의만으로 수직 방향의 메시 설정이 단순화되었습니다.

구성 요소 변환

사용자는 이제 여러 하위 구성 요소로 구성된 구성 요소에 회전, 변환 및 스케일링 변환을 적용하여 복잡한 형상 어셈블리 설정 프로세스를 단순화 할 수 있습니다. GMO (General Moving Object) 구성 요소의 경우, 이러한 변환을 구성 요소의 대칭 축과 정렬되도록 신체에 맞는 좌표계에 적용 할 수 있습니다.

런타임시 스레드 수 변경

시뮬레이션 중에 솔버가 사용하는 스레드 수를 변경하는 기능이 런타임 옵션 대화 상자에 추가되어 사용 가능한 스레드를 추가하거나 다른 태스크에 자원이 필요한 경우 스레드 수를 줄일 수 있습니다.

프로브 제어 열원

활성 시뮬레이션 제어가 형상 구성 요소와 관련된 heat sources로 확장되었습니다.  history probes로 열 방출을 제어 할 수 있습니다.

소스에서 시간에 따른 온도

질량 및 질량/모멘트 소스의 유체 온도는 이제 테이블 입력을 사용하여 시간의 함수로 정의 할 수 있습니다.

방사율 계수

공극으로의 복사 열 전달을위한 방사율 계수는 이제 사용자가 방사율과 스테판-볼츠만 상수를 지정하도록 요구하지 않고 직접 정의됩니다. 후자는 이제 단위 시스템을 기반으로 솔버에 의해 자동으로 설정됩니다.

Output

  • 등속 필드 솔버 옵션을 사용할 때 유량 속도를 선택한 데이터로 출력 할 수 있습니다.
  • 벽 접착력으로 인한 지오메트리 구성 요소의 토크는 기존 벽 접착력 출력과 함께 별도의 수량으로 일반 이력 데이터에 출력됩니다.
  • 난류 모델 출력이 요청 될 때 난류 에너지 및 소산과 함께 전단 속도 및 y +가 선택된 데이터로 자동 출력됩니다.
  • 공기 유입 모델 출력에 몇 가지 수량이 추가되었습니다. 자유 표면을 포함하는 모든 셀에서 혼입 된 공기 및 빠져 나가는 공기의 체적 플럭스가 재시작 및 선택된 데이터로 출력되어 사용자에게 공기가 혼입 및 탈선되는 위치 및 시간에 대한 자세한 정보를 제공합니다. 전체 계산 영역 및 각 샘플링 볼륨 에 대해이 두 수량의 시간 및 공간 통합 등가물이 일반 히스토리 로 출력됩니다.
  • 솔버의 출력 파일 flsgrf 의 최종 크기는 시뮬레이션이 끝날 때 보고됩니다.
  • 2 유체 시뮬레이션의 경우, 기존의 출력 수량 유체 체류 시간 및 유체 가 이동 한 거리는 이제 유체 # 1 및 # 2와 유체의 혼합물에 대해 별도로 계산됩니다.
  • 질량 입자의 경우, 각 종의 총 부피 및 질량이 계산되어 전체 계산 영역, 샘플링 볼륨 및 플럭스 표면에 대한 일반 히스토리 로 출력되어 입자 종 수에 대한 현재 출력을 보완합니다.
  • 최종 로컬 가스 압력 은 사용자가 가스 포획을 식별하고 연료 탱크의 배기 시스템 설계를 지원하는 데 도움이되는 선택적 출력량으로 추가되었습니다. 이 양은 유체로 채워지기 전에 셀의 마지막 공극 압력을 기록하며 단열 버블 모델과 함께 사용됩니다.

새로운 맞춤형 소스 루틴

새로운 사용자 정의 가능 소스 루틴이 추가되었으며 사용자의 개발 환경에서 액세스 할 수 있습니다.

소스 루틴 이름기술
cav_prod_calCavitation 생성과 소산 비율
sldg_uset슬러지 침전 속도
phchg_mass_flux증발 및 응축으로 인한 질량 플럭스
flhtccl유체 # 1과 # 2 사이의 열전달 계수
dsize_cal2 상 흐름에서 동적 액적 크기 모델의 응집 및 분해 속도
elstc_custom점탄성 유체에 대한 응력 방정식의 Source Terms

새로운 사용자 인터페이스

FLOW-3D 사용자 인터페이스는 완전히 새롭게 디자인되어 현대적이고 평평한 구조로 사용자의 작업 흐름을 획기적으로 간소화합니다.

Setup dock widgets

Physics, Fluids, Mesh 및 FAVOR ™를 포함한 모든 설정 작업이 지오 메트리 윈도우 주변에서 독 위젯으로 변환되어 모델 설정을 단일 탭으로 요약할 수 있습니다. 이러한 전환으로 인해 이전 버전의 복잡한 접이식 트리가 훨씬 깨끗하고 효율적인 메뉴 프레젠테이션으로 대체되어 사용자는 ModelSetup탭을 떠나지 않고도 모든 매개 변수에 쉽게 액세스 할 수 있습니다.

New Model Setup icons

새로운 모델 설정 디자인에는 설정 프로세스의 각 단계를 나타내는 새로운 아이콘이 있습니다.

Model setup icons - FLOW-3D v12.0

New Physics icons

RSS feed

새 RSS 피드부터 FLOW-3D v12.0의 시뮬레이션 관리자 탭이 개선되었습니다. FLOW-3D 를 시작하면 사용자에게 Flow Science의 최신 뉴스, 이벤트 및 블로그 게시물이 표시됩니다.

RSS feed - FLOW-3D

Configurable simulation monitor

시뮬레이션을 실행할 때 중요한 작업은 모니터링입니다. FLOW-3Dv1.0에서는 사용자가 시뮬레이션을 더 잘 모니터링할 수 있도록 SimulationManager의 플로팅 기능이 향상되었습니다. 사용자는 시뮬레이션 런타임 그래프를 통해 모니터링할 사용 가능한 모든 일반 기록 데이터 변수를 선택하고 각 그래프에 여러 변수를 추가할 수 있습니다. 이제 런타임에서 사용할 수 있는 일반 기록 데이터는 다음과 같습니다.

  • 최소/최대 유체 온도
  • 프로브 위치의 온도
  • 유동 표면 위치에서의 유량
  • 시뮬레이션 진단(예:시간 단계, 안정성 한계)
출입문에 유동 표면이 있는 대형 댐
Runtime plots of the flow rate at the gates of the large dam

Conforming 메쉬 시각화

용자는 이제 새로운 FAVOR ™ 독 위젯을 통해 적합한 메쉬 블록을 시각화 할 수 있습니다.Visualize conforming mesh blocks

Large raster and STL data

데이터를 처리하는 데 걸리는 시간 때문에 큰 지오 메트리 데이터를 처리하는 것은 수고스러울 수 있습니다. 대형 지오 메트리 데이터를 처리하는 데는 여전히 상당한 시간이 걸릴 수 있지만, FLOW-3D는 이제 이러한 대규모 데이터 세트를 백그라운드 작업으로 로드하여 사용자가 데이터를 처리하는 동안 완전히 응답하고 중단 없는 인터페이스에서 작업을 계속할 수 있습니다

이론 매뉴얼

개요

FLOW-3D는 자유표면을 갖는 3차원 열유동 해석분야에서 가장 널리 사용되는 전산유체역학(CFD) 소프트웨어입니다.

규모의 크기에 제한 받지 않고 물리적 유동현상에 대한 3차원 해를 얻기 위해 유체의 운동방정식의 해를 구하는 특별히 개발된 수치기법을 이용하고 있습니다. 일련의 물리 및 수치적 선택을 통해 다양한 종류의 유체유동 및 열전달 현상에 FLOW-3D를 적용할 수 있습니다. 유체운동은 비선형, 과도형의 2차 미분방정식으로 기술됩니다.

유체 운동방정식을 풀기 위해 이용되어야 하는 방법을 개발하는 과학을 전산유체역학(computational fluid dynamics) 이라고 부릅니다. 이런 방정식들의 수치해는 대수표현식을 갖는 각 항들을 근사하여 계산하게 됩니다. 이렇게 얻어진 방정식들은 원래 방정식의 근사해를 계산하는데, 이 과정을 (전산)모사라고 부르며, 본 이론 설명서에는 FLOW-3D에서 이용하는 수치해석 알고리즘에 대한 내용이 기술되어 있습니다.


Fig. 2. Semi-Lagrangian cellwise advection. (a) Forward advection scheme, (b) Backward advection scheme.

Three-dimensional cellwise conservative unsplit geometric VOF schemes

3차원 셀별 보수 미분할 기하학적 VOF 체계 Raphaël Comminal, JonSpangenberg Abstract This work presents two unsplit geometric VOF schemes that ...
더 보기

레이놀즈 수

본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 ...
더 보기

[FLOW-3D 이론] 1. 개요

개요 FLOW-3D는 범용 전산 유체 역학(CFD) 소프트웨어입니다. 유체의 운동 방정식을 계산하기 위해 특별히 개발된 수치 기법을 사용하여 다중 스케일, 다중 ...
더 보기

[FLOW-3D 이론] Sediment Scour Model / 퇴적물 세굴모델

10.3.20 Sediment Scour Model 퇴적물 세굴모델 퇴적 세굴모델은 입자크기, 질량밀도 임계 전단응력, 안정각 및 연행과 이송 변수 들이 서로 다른 ...
더 보기

[FLOW-3D 이론] Numerical Approximations 수치근사 – Diffusion Process, Heat Conduction and Heat Transfer 확산과정, 열전도및 열전달

Numerical Approximations 수치근사 Diffusion Process, Heat Conduction and Heat Transfer  확산과정, 열전도및 열전달 Diffusion Process  확산과정 내부 점성 전단(즉, 고체 경계로부터 ...
더 보기

[FLOW-3D 이론] Numerical Approximations 수치근사 – Scalar Advection 스칼라 이류

Numerical Approximations 수치근사 Scalar Advection 스칼라 이류 압축성 연속방정식(10.1), 유체분율 방정식(10.19), 내부에너지 방정식(10.21), 그리고 난류에너지 와 소산 방정식 (10.270) 와(10.275) ...
더 보기

[FLOW-3D 이론] Numerical Approximations 수치근사 – 압력 솔루션 알고리즘

Numerical Approximations 수치근사 Pressure Solution Algorithm 압력 해 알고리즘 질량보존의 수치 처리는 압축성과 비압축성에서 상당히 다르다. 그러나 어느 경우든지 적합한 ...
더 보기

[FLOW-3D 이론] Auxiliary Model/Fan and Impeller Model 팬과 임펠러모델

팬과 임펠러모델 FLOW-3D 에서 정의된 팬과 임펠러 모델은 날개의 회전율이 유체가 정상상태에 이를 때까지 많은 회전이 필요할 때 사용될 수있다 ...
더 보기

본 자료는 국내 FLOW-3D 사용자를 위해 미국 FSI의 FLOW-3D 메뉴얼을 번역한 이론에 대한 설명자료 입니다.  따라서 원 저작자의 저작권 라이센스가 있습니다.
본 번역물은 Flow Science, Inc.의 모든 권리를 준수합니다. 본 저작물에 대한 임의 배포는 금지합니다.
FLOW-3D and TruVOF are registered trademarks in the USA and other countries.

이 사용 설명서의 한글번역은 ㈜에스티아이씨앤디 책임하에 공개하고 있습니다. 본 설명서에 관한 의견 등이 있으시면 ㈜에스티아이씨앤디(flow3d@stikorea.co.kr, 02-2026-0455)로 연락주시기 바랍니다.
Copyright 2016 (주)에스티아이씨앤디 All rights reserved.

General CFD

General CFD

A basic requirement for computational fluid dynamics
A basic requirement for computational fluid dynamics

전산 유체 역학 (CFD)의 기본 요구 사항은 밀도, 압력 및 속도 등의 유체 특성을 각 요소에 대해 고유하게 할당할 수있는 미소 요소에 공간을 이산화하는 것입니다. 

공간을 분할하는 다양한 방법 중 일반적인 방법의 일부는 격자 시스템에 쉽게 설명되어 있으며, 각각의 방법에 대해 장단점도 기술되어 있습니다. 

사각형 격자 요소는 아마도 수치 근사를 위해 생성하고 사용하는 가장 간단한 격자 요소이지만, 일반적인 사용이 제한되어 너무 대체로 간주합니다. 

사각형 격자는 여러 가지 방법으로 사각형 격자를 쉽게 확장하고 복잡한 격자 생성의 가능성을 제공할 수 있다고 설명하면 위의 생각이 틀렸다는 것을 보여줍니다.

A basic requirement for computational fluid dynamics (CFD) is to have a discretization of space into small elements in which fluid properties such as density, pressure and velocity can be uniquely assigned to each element.  There are a variety of ways to subdivide space and some of the more common ones are briefly described in the article Grid Systems, which offers a few pros and cons for each possibility.  Rectangular grid elements are probably the simplest to generate and use for numerical approximation, but are often seen as too restricted for general use.  The article Rectangular Grids shows the fallacy of this by explaining how rectangular grids can be easily extended in several ways to offer more complex gridding possibilities.

CFD를 실제 문제에 적용하려면, 질량, 운동량 및 에너지 보존에 관한 기본적인 유체 방정식의 단순한 수치 모델 이상의 경우를 고려하는 것이 필요합니다.  이러한 문제의 일부는 아래에 있는 General CFD  절에서 논의되고 있습니다. 

자유 유체 표면 또는 액체 계면을 수치적으로 모델링하는 다양한 방법의 개요가 나와 있습니다.  

그 밖에도 난류 현상을 모델링하는 방식이 논의되고 있으며, 마지막으로 이산 질량 (또는 마커) 입자의 사용에 대한 일반적인 논의도 포함되어 있습니다.

직관적으로 이산 입자는 복잡한 유체 흐름의 변화을 추적하는데 이상적이라고 생각되지만, 마지막 부분에서 설명된 바와 같이 이산 입자와 관련된 많은 제한에 대해 유의해야 합니다.

Application of CFD to real problems often requires more than a straightforward numerical model of the basic fluid equations for conservation of mass, momentum and energy.  Several of these issues are discussed in the remaining articles under the heading of General CFD.  A short summary is given of different ways to numerically model free fluid surfaces or fluid interfaces.  Another of the articles discusses approaches for modeling turbulence phenomena, and finally, there is a general discussion of the use of discrete mass (or marker) particles.  Intuitively, discrete particles would seem to be ideal for tracking the evolution of complex fluid flow, however, as this last article explains, there are a number of limitations associated with discrete particles that should be kept in mind.

본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 이용하실 때 참고하시기 바랍니다.

전산유체역학(CFD)의 기초

전산유체역학(CFD)의 기초

Dr. Tony Hirt, Founder of Flow Science
Dr. Tony Hirt, Founder of Flow Science

CFD-101은 FlowScience의 창립자이자 VOF(Volume-of-Fluid)개척자인 Dr. C.W. (Tony) Hirt에 의해 작성된 전산 유체 역학 기초를 위한 가장 포괄적인 온라인 자료 중 하나입니다. CFD-101은 전산 유체 역학과 관련된 다양한 문제에 대한 일반적인 소개와 개요를 제공하도록 설계되었습니다. 

우리는 유용하고 정확하며 효율적인 계산 모델을 만들 때 고려해야 할 많은 기능 중 몇 가지만 다루었습니다. CFD의 기초를 쌓는 데 사용할 수있는 많은 논문과 책이 있습니다. 여기서는 일반적으로 표준 참조에 포함되지 않은 몇 가지 주제에 주로 초점을 맞추도록 선택했습니다. 이 CFD 참조 도구를 탐색하려면 오른쪽 메뉴를 사용하십시오.

CFD-101 is one of the most comprehensive online resources for Computational Fluid Dynamics basics, edited by Flow Science’s founder and Volume-of-Fluid (VOF) pioneer, Dr. C.W. (Tony) Hirt. CFD-101 is designed to give a general introduction and overview of a variety of issues concerning computational fluid dynamics. We have only touched on a few of the many features that must be considered when attempting to make useful, accurate and efficient computational models. There are many papers and books available for gaining a basic grounding in CFD. We have chosen here to focus primarily on a few topics that are not generally included in standard references. Please use the menu on the right to explore this CFD reference tool.

CFD for Beginners

CFD (전산 유체 역학)에 대해 생각하는 방법에 대한 일반적인 설명은 자유 표면을 사용한 유체 흐름 시뮬레이션 기사에 나와 있습니다. 이 기사에서는 시뮬레이션 영역을 작은 볼륨 제어 요소로 축소하는 아이디어를 소개합니다. 이 요소에 대한 대수 방정식은 인접한 요소와의 질량, 운동량 및 에너지 교환을 설명하기 위해 구성됩니다. 또한 제어 요소 영역 내에서 자유 유체 인터페이스의 움직임을 설명하는 방법에 대한 간단한 방법이 도입되었습니다.

A general description of how to think about computational fluid dynamics (CFD) is given in the article, Simulating Fluid Flow with Free Surfaces. This article introduces the idea of reducing a simulation region into small volume control elements for which algebraic equations are constructed to describe the conservation of mass, momentum and energy exchanges with neighboring elements. Additionally, a simple method is introduced for a means of describing the motion of free fluid interfaces within the region of control elements.

또한 초보자를 위해 CFD 소프트웨어를 선택할 때 CFD 모델링에 대해 알아야 할 사항에는 유체 역학 문제에 대한 수치적 해결책을 구성하는데 중요한 고려 사항인 다양한 문제에 대한 간략한 요약이 포함되어 있습니다. 메싱, 지오메트리 표현, 암시적 대 명시적 수치 방법 및 완화/수렴 매개 변수와 같은 많은 문제는 CFD-101의 나머지 기사에서 자세히 살펴 봅니다.

Also for beginners, the article, What you should know about CFD modeling when selecting a CFD software, contains brief summaries of a variety of issues that are important considerations for constructing numerical solutions to fluid dynamic problems. Many of these issues, such as meshing, geometry representation, implicit versus explicit numerical methods and relaxation/convergence parameters are explored in greater detail in the remaining articles in CFD-101.

Beyond CFD-101

본 자료의 일부 주제는 CFD를 공부하는 고급수준 학생들에게도 흥미로울 수 있습니다. 예를 들어, 유체가 “비압축성”으로 설명 될 때 의미하는 것은 충족되어야 하는 두 가지 제한 조건을 포함합니다. 또 다른 예는 보존 조건을 완화하는 것이 바람직한 시기를 설명합니다. 그리고 마지막으로 레이놀즈수 의존성을 어떻게 평가해야 하는지 입니다.

Some of the topics in this series of articles may also be of interest to more advanced students of CFD. For example, what is meant when a fluid is described as “incompressible” includes two limit conditions that should be satisfied. Another example describes when it is preferable to relax conservation conditions. And, finally, how should Reynolds number dependencies be evaluated?

본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 이용하실 때 참고하시기 바랍니다.

코팅분야

Coating

FLOW-3D는 산업계 및 학계의 코팅 연구원들이 기계 설계 연구, Display 공정개발 및 최적화를 위해 사용했습니다. 미크론 규모의 코팅 물리학을 이해하는 것은 코팅 유체 유변학의 복잡한 특성과 기판 및 Die와의 상호 작용으로 인해 어려울 수 있습니다.

FLOW-3D 는 비용이 많이 드는 실제 실험에 의존하지 않고, 코팅 프로세스를 분석할 수 있는 편리한 방법을 제공합니다. FLOW-3D는 표면 장력, Wall 접착, 용액 운반, 밀도 기반 흐름 및 상 변화의 영향을 이해하기위한 고밀도 모델링을 제공합니다.

Forward roll coating 공정에 대한 FLOW-3D의 시뮬레이션은 high capillary number수로 인한ribbing 결함을 포착합니다. 이 모델은 backing rollers가 400 micron nip을 통해 유체를 끌어 당길 때 표면 장력과 점도의 효과를 통합합니다. 시뮬레이션은 Lee, et al [1]의 연구를 기반으로합니다.

ribbing 시작에 대한 정확한 예측을 통해 엔지니어는 결함을 방지하기 위한 공정 매개 변수를 식별하고 수정할 수 있습니다.

Reference

[1] Lee, J. H., Han, S. K., Lee, J. S., Jung, H. W., & Hyun, J. C. (2010). Ribbing instability in rigid and deformable forward roll coating flows. Korea Australia Rheology Journal, 22(1), 75-80.

Bibliography

Models

Conference Proceedings


관련 기술자료

Fig. 8. Pressure distribution during the infiltration of preform with the 50 ¯m particles and 20 % starches: (a) 25 % filled, (b) 57 % filled, and (c) 99 % filled.

Experimental study and numerical simulation of infiltration of AlSi12 alloys into Si porous preforms with micro-computed tomography inspection characteristics

마이크로 컴퓨터 단층 촬영 검사 특성을 가진 Si 다공성 프리폼에 AlSi12 합금의 침투에 대한 실험적 연구 및 수치 시뮬레이션 Ruizhe ...
더 보기
Liquid-solid co-printing of multi-material 3D fluidic devices via material jetting

재료 분사를 통한 다중 재료 3D 유체 장치의 액체-고체 공동 인쇄

Liquid-solid co-printing of multi-material 3D fluidic devices via material jetting BrandonHayes,Travis Hainsworth, Robert MacCurdyUniversity of Colorado Boulder, Department of Mechanical ...
더 보기
Fig. 2: Scheme of the LED photo-crosslinking and 3D-printing section of the microfluidic/3D-printing device. The droplet train is transferred from the chip microchannel into a microtubing in a straight section with nearly identical inner channel and inner microtubing diameter. Further downstream, the microtubing passes an LED-section for fast photo cross-linking to generate the microgels. This section is contained in an aluminum encasing to avoid premature crosslinking of polymer precursor in upstream channel sections by stray light. Subsequently, the microtubing is integrated into a 3D-printhead, where the microgels are jammed into a filament that is directly 3D-printed into the scaffold.

On-Chip Fabrication and In-Flow 3D-Printing of Cell-Laden Microgel Constructs: From Chip to Scaffold Materials in One Integral Process

세포가 함유된 마이크로겔의 온칩 제작 및 인-플로우 3D 프린팅구성:하나의 통합 프로세스에서 칩에서 스캐폴드 재료까지 Vollmer, Gültekin Tamgüney, Aldo BoccaciniSubmitted date: ...
더 보기
Figure 3 Simulation PTC pipes enhanced with copper foam and nanoparticles in FLOW-3D software.

다공성 미디어 및 나노유체에 의해 강화된 수집기로 태양광 CCHP 시스템의 최적화

Optimization of Solar CCHP Systems with Collector Enhanced by Porous Media and Nanofluid Navid Tonekaboni,1Mahdi Feizbahr,2 Nima Tonekaboni,1Guang-Jun Jiang,3,4 and ...
더 보기
Energy and exergy analysis of an enhanced solar CCHP system with a collector embedded by porous media and nano fluid

Energy and exergy analysis of an enhanced solar CCHP system with a collector embedded by porous media and nano fluid

Year 2021, Volume 7, Issue 6, 1489 - 1505, 02.09.2021 N. TONEKABONI H. SALARIAN M. Eshagh NIMVARI J. KHALEGHINIA https://doi.org/10.18186/thermal.990897 ...
더 보기
Fig.1 Schematic diagram of the novel cytometric device

Fabrication and Experimental Investigation of a Novel 3D Hydrodynamic Focusing Micro Cytometric Device

Yongquan Wang*a , Jingyuan Wangb, Hualing Chenc School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, P. R. Chinaa ...
더 보기
Figure 1. (a) Top view of the microfluidic-magnetophoretic device, (b) Schematic representation of the channel cross-sections studied in this work, and (c) the magnet position relative to the channel location (Sepy and Sepz are the magnet separation distances in y and z, respectively).

Continuous-Flow Separation of Magnetic Particles from Biofluids: How Does the Microdevice Geometry Determine the Separation Performance?

by  Cristina González Fernández1, Jenifer Gómez Pastora2, Arantza Basauri1, Marcos Fallanza1, Eugenio Bringas1, Jeffrey J. Chalmers2 and Inmaculada Ortiz1,* 1Department of Chemical and Biomolecular Engineering, ETSIIT, ...
더 보기
Fluid velocity magnitude including velocity vectors and blood volumetric fraction contours for scenario 3: (a,b) Magnet distance d = 0; (c,d) Magnet distance d = 1 mm.

Numerical Analysis of Bead Magnetophoresis from Flowing Blood in a Continuous-Flow Microchannel: Implications to the Bead-Fluid Interactions

Jenifer Gómez-Pastora,  Ioannis H. Karampelas,  Eugenio Bringas,  Edward P. Furlani &  Inmaculada Ortiz  Scientific Reports volume 9, Article number: 7265 (2019) Cite this article Abstract 이 연구에서는 ...
더 보기
Fig. 12. Comparison of simulation results with experimental data for a flow rate of water = Ql=15 ml/hr and a flow rate of air = Qg =3 ml/hr.

Simulation of Droplet Dynamics and Mixing in Microfluidic Devices using a VOF-Based Method

A. Chandorkar Published 2009 Abstract This paper demonstrates that the Volume of Fluid (TruVOF) method in FLOW-3D (a general purpose CFD ...
더 보기
Figure 1. Cross-sectional dimensions of a V-groove channel

Modeling Open Surface Microfluidics

개방형 표면 미세 유체 모델링 Open surface microfluidic systems are becoming increasingly popular in the fields of biology, biotechnology, medicine, ...
더 보기

수처리 분야

Municipal

FLOW-3D는아래 시설물과 같은 도시의 수처리 시설물 설계와 분석에 매우 활발하게 사용되고 있습니다:

  • Mixing, settling, and contact tanks
  • Control structures like weirs, gates, ramps, and orifices
  • Combined sewer (CSO) and stormwater sewer (SSO) overflow facilities
  • Pump and lift stations
  • Treatment plant headworks
  • Filtration systems and passive earth and stone filters
  • Baffle and wall placement
  • Hydraulic efficiency and short-circuiting

Vortex simulation municipal application with FLOW-3D

Vortex formation simulated with FLOW-3D

FLOW-3D는 자유표면, 가압(pressurized), 미임계(sub-critical)와 초임계(super-critical) 흐름조건 등을 전환하는 자유표면과 제한된 흐름패턴 모두와 균일한 모델 상태에 최적화되어 있습니다. 추가 물리 패키지를 포함하여 대부분의 복잡한 상황을 모델링 FLOW-3D에 포함되어 있습니다 :

  • Flow bulking due to air entrainment
  • Air bubble escape and air pocket pressurization
  • Drifting and settling particulate matter and the effect on the flow pattern of sediment accumulation
  • Chemical reactions
  • Moving gates and paddles
  • Fast-spinning bladed objects, pumps, and impellers
  • Dissolving and eroding solids
  • Granular flow (slurries)

적용사례

정수장 : DAF SYSTEMS

  • 용존공기부상법 (DAF Systems: Dissolved Air Floation )
    • 가압상태에서 과포화된 물을 감압시키면, 미세기포가 발생되어 상승하면서 수중의콜로이드물질과 충돌/부착되는 원리를 이용하여 수중의 부유물질을 제거하는 수처리 방법
  • Two Phase(Water+Air)/Drift Flux을 이용 기포에 의한 지내의 유동양상을 파악
  • 해석을 통한 기존 구조물의 문제점 파악하여 개선
  • 정수장_DAF_시스템

정수장 : 펌프장 해석

정수장_펌프장_모델해석결과

정수장_펌프장_모델

정수장 : 분말활성탄접촉조

  • v분말활성탄 접촉조 : 유입구의 구조, 수로의 장폭비, 도류벽구조에 의한 변화 -> 최적형상 도출
  • v해석을 통해 각종 Index(Morill Index, Modal Index 등) 분석

분말활성탄접촉초

정수장 : 응집제의 확산

  • G, 혼화지 구조에 따른 turn over time, 지내 속도 분포, 체류시간(t), 등 분석
  • 완속 혼화기, 급속혼화기에서 응집제의 혼화 및 분산 효과 파악

고속분사기_응집제확산

정수장 : 분배수로 유량분배

  • 분배수로의 기능 : 응집지 및 침전비 별로 균일하게 물을 분배함
  • 분배수로의 구조에 따른 응집지 유입수의 유량분배 해석
  • 구조별 유량분배 문제점 파악 및 개선방안 제시
  • 구조별 유량분배를 정량화하여 정수장 효율 향상에 기여함.

분배수로_유량분배

정수장 : 응집지 속도구배(du/dy) 검증

  • 응집기내부의 유동양상 및 속도구배(G)를 규명하여 최적의 운영조건 도출

응집지속도구배

정수장 : 여과지 역세척

  • Strainer를 통한 역세척수 유입 시 유동양상 해석 실시
  • 역세척 시 압력분포의 균일성, 사수부, 침전수의 월류여부 파악
  • 여과 및 역세척의 문제점 파악하여 효율향상 극대화

여과지_역세척

정수장 : 정수지 실험해석 비교

  • 정수지의 기능 : 염소를 균일하게 혼화
  • 정수지 유동양상 및 염소 농도, 체류시간 해석으로 CT 값 예측 및 문제점 개선
  • 실험과의 비교를 통하여 정확성 확보
  • 기존 정수지의 효율향상 및 최적 정수지 형태 제안
  • 정수지는 분말활성탄접촉조와 기능과 형상 유사

정수장_정수지해석

정수장 : 침전지대기온도, 일사량 등 외부조건 고려

  • 대기온도, 일사량 등 외부조건을 고려한 침전지 유동해석 실시
  • 침전지 내부의 밀도류 발생 원인 분석 및 Floc의 운동양상, 제거효율을 해석
  • 실험과의 비교를 통하여 정확성 확보

정수장_침전지_외부조건고려해석

정수장 : 취수탑 선택취수

  • v취수탑 : 상수도·관개·수력발전용 물을 저수지나 하천으로부터 끌어들이기 위한 구조물
  • v취수탑의 선택취수 문제 해석 사례
  • v취수탑 개도 조건에 따른 유출수온도, 조류 유입, 수심별 유입량 등을 예측

취수탑해석

 

하수처리장 : 침전지

  • 침전지 : 하수와 슬러지의 분리 및 배출 기능
    • 해석목적
    • 2차 침전지에서 유량 분배 문제점 파악
    • 2차 침전지에서 유입부 개선안 도출
    • 2차 침전지내의 슬러지 배출 개선안 도출

하수처리장_침전지_모델 하수처리장_침전지_모델_해석결과

 

하수처리장 : 침전지 유량분배 및 유속

  • 구조물의 형상, 유량에 따른 침전지 유동해석
  • 각 지별 유량 분배 균등 여부 파악
  • 슬러지의 재부상(scouring) 여부 예측 및 방지 방안 검토
  • 월류형식, 유입부의 위치 및 규격, 등 설계 요소를 조절하여 균등 분배 유도
    • 하수처리장_침전지_유량분배_해석결과

하수처리장 : 침전지 월류부 해석

  • 침전지 월류부 유동양상 파악
  • 침전지 형상, 월류부 형상에 따른 유속분포 비교
  • 사수부 파악 및 단락류 최소화를 위한 월류부 형상 결정
  • 슬러지의 월류부 개선을 통한 효율 향상

하수처리장_침전지_월류부해석

하수처리장 : 침전지 침전효율

  • 구조물의 형상별, 처리 유량별 침전효율, 사수부 평가
  • 균일한 유속분포에 의한 침전효율 향상
  • 침전지 형상, 유입부 위치, 등을 변경하여 효율 비교
  • 체류시간 검토를 통한 효율 비교
  • 슬러지 침전형태의 비교

하수처리장_침전지_침전효율

하수처리장 : 무산소조

  • 하수처리장 : 무산소조
  • 하수 및 반송슬러지의 혼합, 임펠러의 회전에 의한 혼합양상 해석 실시
  • 유입수 및 내부반송수의 유속분포, 혼합농도 평가
  • 단락류 발생정도 파악 및 완전교반 유도에 유리한 설계방안 검토
  • 내부반송량, 반송슬러지 유입관의 위치 개선으로 효율 향상

하수처리장_무산소조

하수처리장 : 담체의 부상

  • 설계 요소에 따른 담체의 분포 및 흐름 양상 예측
  • 해석 설계 요소 : 조의 형상, 펌프의 용량 및 위치, 내부 배플의 형상

하수처리장_담체의부상

하수처리장 : 호기조 (Aerator)

  • 호기조내 체류시간 분석
  • 기포의 분포, 조내 위치별 D.O 예측
  • 단락류 발생 정도 및 사수부 파악
  • 폭기량 및 폭기 방식에 따른 내부 유동양상을 통한 효율예측

하수처리장_호기조

하수처리장 : 호기조 (D.O 예측)

  • 용존산소량 (Dissolved Oxygen) : 물 속에 녹아 있는 산소량 è 수온이 높아지거나 오염되면 DO감소
  • 조내 산기관에 의해 오염수를 전체적으로 용존산소량 증가 목적 è 조내 사수부, 체류시간 분석
  • 산기관에 의한 공기 방울의 분포 및 D.O 분포를 수류의 흐름을 고려하여 예측
  • 호기조의 구조 및 산기관의 배치에 따른 효율 분석

하수처리장_호기조_용존산소량

하수처리장 : 막분리조

  • 막분리조내의 수류순환 유동해석 실시
  • Air 유입과 Membrane내의 수류순환 유동 검토
  • 사수부 최소화를 위한 구조 변경 (유입부 방식, 위치 및 산기관 위치, 등)
  • 처리 유량에 따른 내부 효율 변화 검토 – 운영조건 제시

하수처리장_막분리조

 

하수처리장 : SBR/PSBR 호기공정

  • 송풍기 작동시 원수와 슬러지의 혼합양상 분석
  • 수중포기기와 송풍기의 작동에 의해 조 내의 슬러지 혼합 활성화 여부 판단 : 수중포기기와 송풍기의 적절한 위치 및 회전수 조절에 의해 개선안 제시 가능

하수처리장_SBR_호기공정

하수처리장 : SBR/PSBR 배출공정

  • 조 내의 유출게이트 OPEN하여 조 내의 상등수 배출양상 분석
  • 바닥의 슬러지 유출없이 배출가능 여부 해석을 통하여 파악 슬러지가 배출되지 않도록 내의 형상 및 문제점 개서안 제시

하수처리장_SBR_배출공정