Figure 4 Snapshots of the trimaran model during the tests. a Inboard side hulls in the Tri-1confguration, b Outboard side hulls in the Tri-4 confguration, c Symmetric side hulls in the Tri-4confguration

조파식 3동선의 선체측면대칭이 저항성능에 미치는 영향에 관한 실험적 연구

Abolfath Askarian KhoobAtabak FeiziAlireza MohamadiKarim Akbari VakilabadiAbbas Fazeliniai & Shahryar Moghaddampour

Abstract

이 논문은 비대칭 인보드, 비대칭 아웃보드 및 다양한 스태거/분리 위치에서의 대칭을 포함하는 세 가지 대안적인 측면 선체 형태를 가진 웨이브 피어싱 3동선의 저항 성능에 대한 실험적 조사 결과를 제시했습니다. 

모델 테스트는 0.225에서 0.60까지의 Froude 수에서 삼동선 축소 모형을 사용하여 National Iranian Marine Laboratory(NIMALA) 예인 탱크에서 수행되었습니다. 

결과는 측면 선체를 주 선체 트랜섬의 앞쪽으로 이동함으로써 삼동선의 총 저항 계수가 감소하는 것으로 나타났습니다. 

또한 조사 결과, 측면 선체의 대칭 형태가 3개의 측면 선체 형태 중 전체 저항에 대한 성능이 가장 우수한 것으로 나타났습니다. 본 연구의 결과는 저항 관점에서 측면 선체 구성을 선택하는 데 유용합니다.

Keywords

  • Resistance performance
  • Wave-piercing trimaran
  • Seakeeping characteristics
  • Side hull symmetry
  • Model test
  • Experimental study
Figure 4 Snapshots of the trimaran model during the tests. a Inboard side hulls in the Tri-1confguration, b Outboard side hulls in the Tri-4 confguration, c Symmetric side hulls in the Tri-4confguration
Figure 4 Snapshots of the trimaran model during the tests. a Inboard side hulls in the Tri-1confguration, b Outboard side hulls in the Tri-4 confguration, c Symmetric side hulls in the Tri-4confguration

References

  • Ackers BB, Thad JM, Tredennick OW, Landen CH, Miller EJ, Sodowsky JP, Hadler JB (1997) An investigation of the resistance characteristics of powered trimaran side-hull configurations. SNAME Transactions 105:349–373Google Scholar 
  • ASME (2005) Test uncertainty, The American society of mechanical engineers performance test code, American Society of Mechanical Engineers, No. PTC 19. 1–2005, New York
  • Chen Y, Yang L, Xie Y, Yu S (2016) The research on characteristic parameters and resistance chart of operation and maintenance trimaran in the sea. Polish Maritime Research 23(s1):20–24. https://doi.org/10.1515/pomr-2016-0041Article Google Scholar 
  • Claire M, Andrea M (2014) Resistance analysis for a trimaran. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering 8(1):7–15Google Scholar 
  • Deng R, Li C, Huang D, Zhou G (2015) The effect of trimming and sinkage on the trimaran resistance calculation. Procedia Engineering 126:327–331. https://doi.org/10.1016/j.proeng.2015.11.199Article Google Scholar 
  • Doctors L, Scrace R (2003) The optimization of trimaran side hull position for minimum resistance. Seventh International Conference on Fast Transportation (FAST 2003), Ischia, Italy, 1–12
  • Du L, Hefazi H, Sahoo P (2019) Rapid resistance estimation method of non-Wigley trimarans. Ships and Offshore Structures 14(8):910–920. https://doi.org/10.1080/17445302.2019.1588499Article Google Scholar 
  • Ghadimi P, Nazemian A, Ghadimi A (2019) Numerical scrutiny of the influence of side hulls arrangement on the motion of a Trimaran vessel in regular waves through CFD analysis. Journal of the Brazilian Society of Mechanical Sciences and Engineering 41(1):1–10. https://doi.org/10.1007/s40430-018-1505-xArticle Google Scholar 
  • Hafez K, El-Kot A-R (2011) Comparative analysis of the separation variation influence on the hydrodynamic performance of a high speed trimaran. Journal of Marine Science and Application 10(4):377–393. https://doi.org/10.1007/s11804-011-1083-0Article Google Scholar 
  • Hafez KA, El-Kot AA (2012) Comparative investigation of the stagger variation influence on the hydrodynamic interference of high speed trimaran. Alexandria Engineering Journal 51(3):153–169. https://doi.org/10.1016/j.aej.2012.02.002Article Google Scholar 
  • Hashimoto H, Amano S, Umeda N, Matsuda A (2011) Influence of side-hull positions on dynamic behaviors of a trimaran running in following and stern quartering seas. Proceedings of the 21th International Conference on Offshore and Polar Engineering, 573–580
  • Insel M, Molland AF (1991) An investigation into the resistance components of high speed displacement catamarans. Transactions of the Royal Institution of Naval Architects 134:1–20. https://doi.org/10.1007/s11804-013-1193-yArticle Google Scholar 
  • ITTC (2014) Testing and extrapolation methods in resistance towing tank tests, Recommended Procedures, 7.5–02–02–01
  • Iqbal M, Utama IKAP (2014) An investigation into the effect of water depth on the resistance components of trimaran configuration. Proceedings of the 9th International Conference on Marine Technology, Surabaya
  • Lewis EV (1988) Principles of Naval Architecture. The Society of Naval Architects and Marine Engineers III: 323–324
  • Luhulima RB, Utama I, Sulisetyono A (2016) Experimental investigation into the resistance components of displacement trimaran at various lateral spacing. International Journal of Engineering Research & Science (IJOER) 2:21–29Google Scholar 
  • Luhulima RB (2017) An Investigation into the resistance of displacement trimaran: a comparative analysis between experimental and CFD approaches. International Journal of Mechanical Engineering (IJME) 6:9–18Google Scholar 
  • Molland AF, Turnock SR, Hudson DA (2011) Ship resistance and propulsion: practical estimation of ship propulsive power. Cambridge University Press, 544.
  • Verna S, Khan K, Praveen PC (2012) Trimaran hull form optimization, using ship flow. International Journal of Innovative Research and Development 1(10):5–15
  • Yanuar Y, Gunawan G, Talahatu MA, Indrawati RT, Jamaluddin A (2013) Resistance analysis of unsymmetrical trimaran model with outboard side hulls configuration. Journal of Marine Science and Application 12(3):293–297Article Google Scholar 
  • Yanuar Y, Gunawan G, Talahatu MA, Indrawati RT, Jamaluddin A (2015a) Resistance reduction on trimaran ship model by biopolymer of eel slime. Journal of Naval Architecture and Marine Engineering 12(2):95–102. https://doi.org/10.3329/jname.v12i2.19549Article Google Scholar 
  • Yanuar Y, Gunawan G, Waskito KT, Jamaluddin A (2015b) Experimental study resistances of asymmetrical Pentamaran model with separation and staggered hull variation of inner side-hulls. International Journal of Fluid Mechanics Research 42(1):82–94. https://doi.org/10.1615/interjfluidmechres.v42.i1.60Article Google Scholar 
  • Zhang WP, Zong Z, Wang WH (2012) Special problems and solutions for numerical prediction on longitudinal motion of trimaran. Applied Mechanics and Materials 152-154: 1262–75. https://doi.org/10.4028/www.scientific.net/amm.152-154.1262
  • Zhang L, Zhang JN, Shang YC (2019) A potential flow theory and boundary layer theory based hybrid method for waterjet propulsion. Journal of Marine Science and Engineering 7(4):113–132. https://doi.org/10.3390/jmse7040113Article Google Scholar 
圖1. 1 南海孤立內波空間分布圖(Hsu et al., 2000)

Numerical Modeling on Internal Solitary Wave propagation over an obstacle using Flow-3D

Keyword: Internal solitary waves, Numerical, Flow-3D, Computational Fluid Dynamics

연구자 : Yu-Ren Chen
지도교수 : Dr John R C Hsu
June 2012

기술과 수치 알고리즘의 발전으로 파도가 해양이나 항만 구조물에 미치는 영향에 대한 많은 연구가 개발되었으며,보다 정확한 결과를 얻기 위해 고효율 수치 계산 소프트웨어를 사용할 수 있습니다. 현재 내부 파 생성, 전송, 파동의 물리적 메커니즘은 국내외 해양 분야에서 중요한 연구 주제 중 하나입니다.

이 연구는 FLOW-3D 전산 유체 역학 (Computational Fluid Dynamics, CFD) 소프트웨어를 사용하여 상층의 담수와 하층의 담수를 시뮬레이션합니다. 바닷물의 밀도 계층화 유체는 중력 혼합 붕괴 방식을 사용하여 내부 파도를 생성하고 긴 경사와 같은 일반적인 장애물을 통해 파형 진화 및 유동장 분포를 탐구합니다.

짧은 플랫폼 사다리꼴 경사와 이등변 삼각형. 이 기사에서는 또한 소프트웨어 작동 설정과 FLOW-3D를 내부 파 실험에 적용하는 방법을 소개하고, 이전 실험 조건과 결과를 참조하여 내부 파 전송 과정을 시뮬레이션합니다. 시뮬레이션 결과는 실험 데이터를 확인하고 첫 번째 분석을 시뮬레이션합니다.

중력 붕괴 방식의 게이트의 개방 속도가 내부 파의 전송 시간 및 진폭에 미치는 영향; 시뮬레이션 결과는 게이트 개방 속도가 빠르고 내부 파의 진폭이 크고 전송 속도가 빠릅니다. ; 반대로 게이트 개방 속도가 느리면 내부 파의 진폭이 작고 전송 속도가 느리지 만 둘 다 비선형 비례 관계.

이 연구는 또한 다양한 장애물 (긴 기울기, 사다리꼴 기울기가있는 짧은 플랫폼, 이등변 삼각형)을 통한 내부 고독 파의 전송 과정을 시뮬레이션하고 단일 장애물을 통과하는 내부 파도의 파형 진화, 와류 및 유동장 변화를 논의합니다.

연구를 통해 우리가 매우 미세한 그리드를 사용하고 수치 시뮬레이션의 그래픽 출력을 열심히 분석 할 수 있다면 실험실 실험 관찰보다 내부 고독 파의 전송 특성을 더 잘 이해할 수 있다고 믿습니다.

요약

서로 다른 특성을 가진 두 유체의 계면에있는 파동을 계면 파라고합니다. 바다에서는 표층의 기압 변화에 의해 형성된 바람 장이 공기와 바다의 경계 파인 해면에 불어 올 때 변동을 일으킨다. 기체 또는 유체의 밀도 층화가 발생할 때 외부 힘 (예 : 바람, 압력, 파도 및 조류, 중력 등)에 의해 교란되면 내부 파도라고하는 경계면에서 변동이 발생할 수 있으므로 내부 파도가 발생할 수 있습니다. 웨이브는 밀도가 다른 층화 된 유체의 웨이브 현상입니다.

대기의 내부 파도와 같이 일상 생활에서 볼 수있는 내부 파도는 특히 오후 또는 비가 내리기 전에 깊고 얕은 altocumulus 구름 층으로 하늘에 자주 나타납니다. 대기 중의 내부 파의 움직임은 공기의 흐름에 영향을 주어 기류를 상승시키고 공기 중의 수증기가 물방울로 응축되어 구름이되도록합니다.

반대로 기류가 가라 앉으면 수증기가 응결이 쉽지 않습니다. 구름이 있어도 내부의 파도가 응결하기 어렵습니다. 소산되어 루버와 같은 altocumulus 구름을 형성합니다. 안정된 밀도와 층화 상태의 자연 수체는 외부 세계에 의해 교란 될 때 내부 파동 운동을 겪게됩니다.

예를 들어, 밀도가 안정되고 층화가 분명한 호수에서 바람 장은 수면에 파도에서 파생 된 내부 파동을 일으켜 물의 질량이 전달되고 호수 가장자리로 물이 축적되어 수위가 높아집니다. 위치 에너지를 형성하는 축적 영역; 수역이 가라 앉기 시작하면 위치 에너지를 운동 에너지로 변환하고 남미 콜롬비아의 Babine Lake의 내부 파동 거동과 같은 내부 파동 운동을 생성 할 수도 있습니다 (Farmer, 1978). ). 염분, 밀도 또는 온도가 안정된 바다에서는 조수와 지형의 영향으로 수역이 행성의 중력에 따라 움직입니다.

격렬한 기복이있는 지형을 통과 할 때 내부 파동이 발생합니다. ; 중국 해에서 발견되는 남쪽 내부 파도에서와 같이 (Hsu et al., 2000). 파동은 심해에서 얕은 물로 전달되며, 얕아 짐, 깨짐, 혼합, 소용돌이, 굴절, 회절 및 반사가있을 것입니다. 내부 파 전달은 일종의 파동이기 때문에 위에서 언급 한 파동 특성도 갖습니다.

해양 내부 파도는 길이가 수백 미터에서 수십 킬로미터에 이르는 광범위한 파장을 가지고 있으며,주기는 몇 분 정도 빠르며 수십 시간 정도 느리며 진폭은 몇 미터에서 수백 미터. 해양 내부 파도가 움직일 때 층화 위와 아래의 물 흐름 방향이 반대가되어 현재 전단 작용으로 인해 층화 경계면에서 큰 비틀림 힘이 발생합니다.

바다에 기초 말뚝과 같은 구조물이있는 경우 석유 시추 플랫폼의 고정 케이블은 큰 비틀림을 견딜 수 없어 파손될 가능성이 매우 높습니다 (Bole et al. 1994). 빽빽한 클라인 경계 근처에서 항해하는 잠수함이 해양 내부 파도 활동을 만나게되면 내부 파도에 의한 상승 전류로 인해 잠수함이 해저에 수면에 닿거나 충돌하여 잠수함이 손상 될 수 있습니다.

그러나 바다의 내부 파는 바람직하지 않으며 매우 중요한 역할을합니다. 예를 들어, 내부 파가 심해 지역에서 근해 대륙붕으로 전달되면 상하수 체가 교환됩니다. 해저에 영양분을 운반합니다. 선반 가장자리까지 생물학적 성장을 촉진하고 해당 지역의 생태 환경을 조절하며 (Osborne and Bruch et al., 1980; Sandstorm and Elliot et al., 1984) 어업 자원을 풍부하게합니다.

위에서 언급 한 항목 외에도 해저에 대한 케이블 및 파이프 라인, 수중 음파 탐지기, 해양 생물 환경, 군사 활동 등이 해양 내부 파도의 영향에 포함되므로 해양 내부 파도에 대한 연구가 매우 중요합니다.

최근 내부 파를 연구하는 방법에는 분석 이론 도출, 현장 조사 및 관찰, 실험실 실험 분석이 포함됩니다. 그러나 과학 기술의 급속한 발전, 발전과 발전, 컴퓨터의 대중화, 수치 계산 방법의 진화로 해양 공학과 관련된 많은 파동 효과는 일반적으로 수치 시뮬레이션 방법으로 해결됩니다.

또한 수치 연산 방법의 비용이 현장 조사 관측 및 실험실 실험 해석보다 저렴하고 시뮬레이션 결과를 더 빨리 얻을 수 있기 때문에 본 논문에서는 전산 유체 역학 (전산 유체 역학, 참조)의 FLOW-를 선정 하였다. 3D 소프트웨어는 내부 파 생성, 전송, 장애물 통과, 점차 소멸하는 움직임 과정을 시뮬레이션하고, 내부 파의 변화 과정을 분석하고 비교하기 위해 이전 실험실 모델 실험을 참조합니다.

圖1. 1  南海孤立內波空間分布圖(Hsu et al., 2000)
圖1. 1 南海孤立內波空間分布圖(Hsu et al., 2000)
圖1. 2  障礙高度與分層流體厚度關係之示意圖
圖1. 2 障礙高度與分層流體厚度關係之示意圖
圖3. 1 下沉型內孤立波通過梯形障礙的實驗配置圖(鄭明宏,2011)
圖3. 1 下沉型內孤立波通過梯形障礙的實驗配置圖(鄭明宏,2011)
圖3. 3  實驗室下沉型內孤立波經過13°斜坡梯形障礙物的連續組圖(鄭明宏,2011)
圖3. 3 實驗室下沉型內孤立波經過13°斜坡梯形障礙物的連續組圖(鄭明宏,2011)
圖3. 3 (a) 實驗室下沉型內孤立波(鄭明宏,2011;θ=13°,T = t0 = 42 s)
圖3. 3 (a) 實驗室下沉型內孤立波(鄭明宏,2011;θ=13°,T = t0 = 42 s)
圖3. 5 比較實驗室(上圖)內孤立波(圖3. 3 (a))與FLOW-3D模擬(下圖)的傳遞波形(θ=13°,t = 42 s)
圖3. 5 比較實驗室(上圖)內孤立波(圖3. 3 (a))與FLOW-3D模擬(下圖)的傳遞波形(θ=13°,t = 42 s)
圖4. 6閘門開啟速率0.14 m/s之等密度線及流場
圖4. 6閘門開啟速率0.14 m/s之等密度線及流場

圖4. 53 內波在三角形前坡反轉為順時針渦流,後坡面上形成逆時針渦流(t = 63 s)
圖4. 53 內波在三角形前坡反轉為順時針渦流,後坡面上形成逆時針渦流(t = 63 s)

Reference

Apel, J.R., Holbrook, J.R, Tsai, J. and Liu, A.K. (1985). The Sulu Sea internal soliton experiment. J. Phys. Oceanography, 15(12): 1625-1651. Ariyaratnam, J. (1998). Investigation of slope stability under internal wave action. B.Eng. (Hons.) thesis, Dept. of Environmental Eng., University of Western Australia, Australia. Baines, P.G. (1983). Tidal motion in submarine canyons – a laboratory experiment. J. Physical Oceanography, 13: 310-328. Benjamin, T.B. (1966). Internal waves of finite amplitude and permanent form. J. Fluid Mech., 25: 241-270. Bole, J.B., Ebbesmeyer, J.J. and Romea, R.D. (1994). Soliton currents in South China Sea: measurements and theoretical modelling. Proc. 26th Annual Offshore Tech. Conf., Houston, Texas. 367-375. Burnside, W. (1889). On the small wave-motions of a heterogeneous fluid under gravity. Proc. Lond., Math. Soc., (1) xx, 392-397. Chen C.Y., J.R-C. Hsu, H.H. Chen, C.F. Kuo and Cheng M.H (2007). Laboratory observations on internal solitary wave evolution on steep and inverse uniform slopes. Ocean Engineering, 34: 157-170. Cheng M.H., J.R-C. Hsu, C.Y. Chen (2005). Numerical model for internal solitary wave evolution on impermeable variable seabad, Proc.27th Ocean Eng, pp.355-359. Choi, W. and Camassa, R. (1996). Weakly nonlinear internal waves in a two-fluid system. J. Fluid Mech., 313: 83-103. Ebbesmeyer, C.C., and Romea, R.D. (1992). Final design parameters for solitons at selected locations in South China Sea. Final and supplementary reports prepared for Amoco Production Company, 209pp. plus appendices. Ekman, V. M., (1904). “On dead-water, Norwegian North Polar Expedition”, 1893-1896. Scientific Results, 5(15):1-150. Farmer, D.M. (1978). Observation of long nonlinear internal waves in a lake. J. Phys. Oceanography, 8(1): 63-73. Garret, C. and Munk, W. (1972). Space-time scales of internal waves. Geophys. Fluid Dyn., 3: 225-264. Gill, A.E. (1982). Atmosphere-Ocean Dynamics. International Geophysical Series, Vol. 30, San Diego, CA: Academic Press. Harleman, D.R.F. (1961). Stratified flow. Ch. 26 in Handbook of Fluid Dynamics (ed., V. Streeter), NY: McGraw-Hill, (26): 1-21. Helfrich, K.R. (1992). Internal solitary wave breaking and run-up on a uniform slope. J. Fluid Mech., 243: 133-154.

Helfrich, K.R. and Melville, W.K. (1986). On long nonlinear internal waves over slope-shelf topography. J. Fluid Mech., 167: 285-308. Honji, H., Matsunaga, N., Sugihara, Y. and Sakai, K. (1995). Experimental observation of interanl symmetric solitary waves in a two-layer fluid. Fluid Dynamics Research, 15 (2): 89-102. Hsu, M.K., Liu, A.K., and Liu, C. (2000). A study of internal waves in the China Sea and Yellow Sea using SAR. Continental Shelf Research, 20: 389-410. Johns, K. (1999). Interaction of an internal wave with a submerged sill in a two-layer fluid. B.Eng. (Hons.) thesis, Dept. of Environmental Eng., University of Western Australia, Australia Kao, T.W., Pan, F.S. and Renouard, D. (1985). Internal solitions on the pycnocline: generation, propagation, shoaling and breaking over a slope. J. Fluid Mech. 159: 19-53. Koop, C.G. and Butler, G. (1981). An investigation of internal solitary waves in a two-fluid system. J. Fluid Mech., 112: 225-251. Lin, T.W. (2001). A study on internal waves characteristics in north of South China Sea, Master Thesis, Institute of Oceanography, National Taiwan Univ., Taiwan. (In Chinese). Lynett, P., Wu, T.-R. and Liu, P. L.-F. (2002), Modeling wave runup with depth-integrated equations, Coastal Engineering, Vol. 46, pp. 89-107. Ming-Hung Cheng,John R.-C. Hsu, Chen-Yuan Chen and Cheng-Wu Chen (2009). Modelling the propagation of an internal solitary wave across double ridges and a shelf-slope.Environ Fluid Mech,9:321–340. Ming-Hung Cheng and John R.C. Hsu (2011). Effect of frontal slope on waveform evolution of a depression interfacial solitary wave across a trapezoidal obstacle. Ocean Engineering. Matsuno, Y. (1993). A unified theory of nonlinear wave propagation in two-layer fluid systems. J. Phys. Soc. Japan, 62: 1902-1916. Michallet, H. and Barthelemy, E. (1998). Experimental study of interfacial solitary waves. J. Fluid Mech., 366: 159-177. Muller, P. and X. Liu (2000). Scattering of internal waves at finite topography in two dimensions. Part I: Theory and case studies, J. Phys. Oceanogr., 30: 532-549 Nagashima, H. (1971). Reflection and breaking of internal waves on a sloping beach. J. Oceanographical Soc. Japan, 27(1): 1-6. Nansen, F. (1902). The oceanography of the north polar basin. Sci. Results, Norwegian North Polar Expedition 1893-1896, 3: 9. Osborne, A.R. and Burch, T.L. (1980). Internal solitons in the Andaman Sea. Science, 208 (43): 451-460

82 Russell, J.S. (1844). On waves. Report of the 14th Meeting of the British Association for the Advancement of Science, York, 311-390. Sandstrom, H. and Elliot J. A. (1984). Internal tide and solitons on the Scotian Shelf: a nutrient pump at work. Journal of Geophysical Research, 89 (C4): 6415-6428. Stokes G.G. (1847). On the Theory of Oscillatory Waves. Transactions of the Cambridge Philosophical Society, 8: 441–455. Strutt, J. W., Lord Rayleigh. (1883). Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density.Proceedings of the London mathematical society, 8: pp. 170-177. Sveen, J.K., Guo, Y., Davies, P.A. and Grue, J. (2002). On the breaking of internal solitary waves at a ridge. J. Fluid Mech., 469 (25): 161-188. Vlasenko, V., and Hutter, K. (2002). Numerical experiments on the breaking of solitary internal waves over a slope-shelf topography. J. of Physical Oceanography, 32(6), pp.1779-1793. Wessels F. and Hutter K. (1996). Interaction of internal waves with a topographic sill in a two-layered fluid. J. Phys. Oceanogr , 26: 5-20

Evaluation of the Wind Effects on the Iron-Ore Stock Pile

Energy

Energy

전 세계 에너지 부문의 엔지니어는 전산 유체 역학(CFD)을 통해 해결책을 찾기 위해 광범위한 프로세스에서 매일 복잡한 설계 문제에 직면합니다. 특히 자유 표면 흐름과 관련이 높은 이러한 문제의 대부분은 FLOW-3D가 매우 정확한 분석을 제공하여 문제 해결에 적합합니다.

  • 공해에서 컨테이너 내부의 연료 또는화물 슬로싱 / Fuel or cargo sloshing inside containers on the high seas
  • 해양 플랫폼에 대한 파도 효과 / Wave effects on offshore platforms
  • 6 자유도 모션을 받는 분리 장치의 성능 최적화 / Performance optimization for separation devices undergoing 6 DOF motion
  • 파동 에너지 포착 장치 / Design of devices to capture energy from waves

Energy Case Studies

천연자원이 계속 감소함에 따라, 대체 자원과 방법을 탐구하고 가능한 한 효과적으로 현재 공급량을 사용하고 있습니다. 엔지니어는 사고를 예방하고 채굴 및 기타 에너지 수확 기법으로 인한 환경적 영향을 평가하기 위해 FLOW-3D를 사용합니다.

Tailing Breach Simulation – CFD Analysis with FLOW-3D

점성이 높은 유체, 비 뉴턴 흐름, 슬러리 또는 심지어 세분화 된 흐름의 형태를 취할 수있는 많은 채광 응용 프로그램의 잔여 물인 테일링은 악명 높은 시뮬레이션 전제를 제공합니다. FLOW-3D  는 비 뉴턴 유체, 슬러리 및 입상 흐름에 대한 특수 모델을 포함하여 이러한 분석을 수행하는 데 필요한 모든 도구를 제공합니다. FLOW-3D 의 자유 표면 유동 모델링 기능 과 결합되어  이러한 어렵고 환경 적으로 민감한 문제에 대한 탁월한 모델링 솔루션을 제공합니다.

관련 응용 분야에는 바람 강제 분석에 따른 광석 비축 더미 먼지 드리프트가 포함되며, 여기서 FLOW-3D 의 드리프트 플럭스 모델을 통해 엔지니어는 광석 침착 및 유입 패턴과 개선 솔루션의 효과를 연구 할 수 있습니다.

액화와 기계적 방해가 물과 같은 뉴턴 흐름과는 대조적으로 입자 흐름의 매우 독특한 속성 인 결국 저절로 멈추는 위반의 동적 특징의 일부라는 점에 유의하십시오.

오일 및 가스 분리기

FLOW-3D  는 기름과 물과 같은 혼합 불가능한 유체를 모델링 할 수 있으며 개방 된 환경 (주변 공기)과 관련된 구성 요소 간의 뚜렷한 인터페이스를 정확하게 추적 할 수 있습니다. 유체는 전체 도메인에 영향을 미치는 역학으로 인해 자유롭게 혼합 될 수 있습니다. 시간이 지남에 따라 유체는 연속 상과 분산 상 간의 드리프트 관계에 따라 다시 분리됩니다. 중력 분리기의 성능은 CFD 모델링을 통해 향상 될 수 있습니다.

  • 기체 및 액체 흐름의 균일성을 개선하고 파도에 의한 슬로싱으로 인한 오일과 물의 혼합을 방지하기 위해 용기 입구 구성을 개발합니다.
  • 유압 효율 및 분리 성능에 대한 내부 장비의 영향을 결정합니다.
  • 작동 조건 변화의 영향 측정
  • 소규모 현상 (다상 흐름, 방울, 입자, 기포)을 정확하게 모델링

생산 파이프 | Production Pipes

생산에 사용되는 공정 파이프의 청소 과정에서 유체가 위로 흘러도 고밀도 입자가 침전될 수 있습니다. 침전 입자를 포착하도록 장치를 설계 할 수 있습니다. 파이프 중앙에 있는 “버킷”이 그러한 잠재적 장치중 하나 입니다. 흐름 변위로 인해 버킷 외부의 상류 속도는 고밀도 입자에 대한 침전 속도보다 높으며 버킷 내부에 모여 있습니다. 표시된 디자인에서 버킷 주변의 상향 유체 속도는 입자 안정화 속도보다 높습니다. 이로 인해 입자가 버킷과 파이프 벽 사이의 틈새를 통해 빠져 나갈 수 없습니다. 따라서 시뮬레이션된 입자는 버킷을 통과하여 아래에 정착하지 않습니다.

파동 에너지 장치 모델링 | Modeling Wave Energy Devices

포인트 흡수 장치 | Point Absorber Devices

이 시뮬레이션은 상단에 부력이있는 구형 구조가있는 점 흡수 장치를 보여 주며, 들어오는 파도의 볏과 골과 함께 위아래로 이동합니다. FLOW-3D 의 움직이는 물체 모델은 x 또는 y 방향으로의 움직임을 제한하면서 z 방향으로 결합 된 움직임을 허용하는 데 사용됩니다. 진폭 5m, 파장 100m의 스톡 스파를 사용했다. RNG 모델은 파도가 점 흡수 장치와 상호 작용할 때 발생하는 난류를 포착하는 데 사용되었습니다. 예상대로 많은 난류 운동 에너지가 장치 근처에서 생성됩니다. 플롯은 난류로 인해 장치 근처의 복잡한 속도 장의 진화로 인해 질량 중심의 불규칙한 순환 운동을 보여줍니다.

다중 플랩, 하단 경첩 파동 에너지 변환기 | Multi-Flap, Bottom-Hinged Wave Energy Converter

진동하는 플랩은 바다의 파도에서 에너지를 추출하여 기계 에너지로 변환합니다. Arm은 물결에 반응하여 피벗된 조인트에 장착된 진자로 진동합니다. 플랩을 배열로 구성하여 다중 플랩 파동 에너지 변환기를 만들 수 있습니다. 아래 상단에 표시된 CFD 시뮬레이션에서 3 개의 플랩 배열이 시뮬레이션됩니다. 모든 플랩은 바닥에 경첩이 달려 있으며 폭 15m x 높이 10m x 두께 2m입니다. 어레이는 30m 깊이에서 10 초의 주파수로 4m 진폭파에서 작동합니다. 시뮬레이션은 중앙 평면을 따라 복잡한 속도 등 가면을 보여줍니다. 이는 한 플랩이 어레이 내의 다른 플랩에 미치는 영향을 연구하는 데 중요합니다. 3 개의 플랩이 유사한 동적 동작으로 시작하는 동안 플랩의 상호 작용 효과는 곧 동작을 위상에서 벗어납니다. 유사한 플랩 에너지 변환기가 오른쪽 하단에 표시됩니다. 이 시뮬레이션에서 플랩은 가장 낮은 지점에서 물에 완전히 잠 깁니다. 이러한 에너지 변환기를 Surface Piercing 플랩 에너지 변환기라고합니다. 이 두 시뮬레이션 예제는 모두 미네르바 역학 .

진동 수주 | Oscillating Water Column

진동하는 수주는 부분적으로 잠긴 중공 구조입니다. 그것은 물의 기둥 위에 공기 기둥을 둘러싸고 수면 아래의 바다로 열려 있습니다. 파도는 물 기둥을 상승 및 하강시키고, 차례로 공기 기둥을 압축 및 감압합니다. 이 갇힌 공기는 일반적으로 기류의 방향에 관계없이 회전 할 수 있는 터빈을 통해 대기로 흐르게 됩니다. 터빈의 회전은 전기를 생성하는 데 사용됩니다.

아래의 CFD 시뮬레이션은 진동하는 수주를 보여줍니다. FLOW-3D에서 포착한 물리학을 강조하기 위해 중공 구조에서 물기둥이 상승 및 하강하는 부분만 모델링  합니다. 시뮬레이션은 다른 파형 생성 선택을 제외하고 유사한 결과를 전달합니다. 아래의 시뮬레이션은 웨이브 유형 경계 조건을 사용하는 반면 그 아래의 시뮬레이션은  움직이는 물체 모델  을 사용하여 실험실에서 수행한 것처럼 차례로 웨이브를 생성하는 움직이는 플런저를 생성합니다. 각 시뮬레이션에 대해 속이 빈 구조의 압력 플롯이 표시됩니다. 결국 그 압력에 기초하여 터빈이 회전 운동으로 설정되기 때문에 챔버에서 얼마나 많은 압력이 생성되는지 아는 것이 중요합니다.

사례 연구

eadership-in-energy-and-environmental-design

Architects Achieve LEED Certification in Sustainable Buildings

LEED (Leadership in Energy and Environmental Design)는 제 3자가 친환경 건축물 인증을 제공하는 자발적 인증 시스템입니다.

FLOW-3D는 보고타(콜롬비아)의 사무실 건물에서 “IEQ-Credit2–환기 증가”라는 신뢰를 얻는 데 큰 도움을 주었습니다. 이러한 인정을 받기 위해서는 실외 공기가 ASHRAE의 표준 비율인 30%를 초과한다는 것을 증명해야만 합니다. 이 건물에서 실외 공기는 태양 광선에 의해, 가열되는 지붕 위의 2개의 유리 굴뚝에 의해 발생되는 온도 차이에 의해 발생하는 열 부력의 영향으로 제공됩니다. 이것은 바람이 불지 않는 조건에서 이루어져야 합니다.

Comparing HVAC System Designs

최근 프로젝트에서 Tecsult의 HVAC(난방, 냉방 및 환기)시스템 엔지니어는 강력한 에어컨 시스템의 두 가지 다른 구성을 고려해야 했고 노동자들에게 어떤 것이 가장 쾌적함을 제공하는지 보여주기를 원했습니다. FLOW-3D는 대체 설계를 시뮬레이션하고 비교하는 데 사용되었습니다.

이 발전소는 대형(길이 90m, 너비 33m, 높이 26m)건물로 변압기, 전력선, 조명 등 열 발생 장비를 갖추고 있습니다. 에어컨 시스템의 목적은 건물 내 최대 온도를 35ºC로 제한하는 것입니다. 디퓨저가 하부 레벨에 위치하고 천장 근처의 환기구가 있기 때문에 천장 근처에서 최대 공기 온도가 발생하고 바닥 레벨은 반드시 몇도 더 낮습니다.

Modeling velocity of debris types

Debris Transport in a Nuclear Reactor Containment Building

이 기사는 FLOW-3D가 원자력 시설에서 봉쇄 시설의 성능을 모델링하는데 사용된 방법을 설명하며, Alion Science and Technology의 Tim Sande & Joe Tezak이 기고 한 바 있습니다.

가압수형 원자로 원자력 발전소에서 원자로 노심을 통해 순환되는 물은 약 2,080 psi 및 585°F의 압력과 온도로 유지되는 1차 배관 시스템에 밀폐됩니다. 수압이 높기 때문에 배관이 파손되면 격납건물 내에 여러 가지 이물질 유형이 생성될 수 있습니다. 이는 절연재가 장비와 균열 주변 영역의 배관에서 떨어져 나가기 때문에 발생합니다. 생성될 수 있는 다양한 유형의 이물질의 일반적인 예가 나와 있습니다(오른쪽).

Evaluation of the Wind Effects on the Iron-Ore Stock Pile

Evaluation of the Wind Effects on the Iron-Ore Stock Pile

바람이 개방형 골재 저장소에 미치는 영향은 전 세계적으로 환경 문제가 되고 있습니다. 2.7km철골 저장소 부지에서 이런 문제가 관찰되었습니다. 이 시설은 철도 운송차량를 통해 광석을 공급받는데, 이 운송차량은 자동 덤프에 의해 비워집니다. 그런 다음 이 광석은 일련의 컨베이어와 이송 지점을 통과하여 저장 장소중 하나로 운송됩니다. 비산먼지 배출은 풍력이 비축된량에 미치는 영향의 결과로 관찰된 결과입니다.

관련 기술자료


The Fastest Laptops for 2024

FLOW-3D 수치해석용 노트북 선택 가이드

2024년 가장 빠른 노트북 PCMag이 테스트하는 방법 소개 : 기사 원본 출처: https://www.pcmag.com/picks/the-fastest-laptops CFD를 수행하기 위한 노트북 선정 기준은 별도로 ...
Schematic view of the experimental set-up

Short-time numerical simulation of ultrasonically assisted electrochemical removal of strontium from water

September 2023 DOI:10.30955/gnc2023.00436 Conference: 18th International Conference on Environmental Science and Technology CEST2023, 30 August to 2 September 2023, Athens, ...
Figure 1. US bath modified as an EC reactor

물에서 초음파를 이용한 전기화학적 스트론튬 제거에 대한 단시간 수치 시뮬레이션

전기화학 반응기에 대한 3D 수치 시뮬레이션 및 측정을 사용하여 동시 초음파 처리 유무에 관계없이 물에서 스트론튬 제거 효율을 분석했습니다. 초음파는 ...
Figure 1. Three-dimensional finite element model of local scouring of semi-exposed submarine cable.

반노출 해저케이블의 국부 정련과정 및 영향인자에 대한 수치적 연구

Numerical Study of the Local Scouring Process and Influencing Factors of Semi-Exposed Submarine Cables by Qishun Li,Yanpeng Hao *,Peng Zhang,Haotian Tan,Wanxing Tian,Linhao ...
Validity evaluation of popular liquid-vapor phase change models for cryogenic self-pressurization process

극저온 자체 가압 공정을 위한 인기 있는 액체-증기 상 변화 모델의 타당성 평가

액체-증기 상 변화 모델은 밀폐된 용기의 자체 가압 프로세스 시뮬레이션에 매우 큰 영향을 미칩니다. Hertz-Knudsen 관계, 에너지 점프 모델 및 ...
Figure 3. Different parts of a Searaser; 1) Buoy 2) Chamber 3) Valves 4) Generator 5) Anchor system

데이터 기반 방법을 활용한 재생 가능 에너지 변환기의 전력 및 수소 생성 예측 지속 가능한 스마트 그리드 사례 연구

Fatemehsadat Mirshafiee1, Emad Shahbazi 2, Mohadeseh Safi 3, Rituraj Rituraj 4,*1Department of Electrical and Computer Engineering, K.N. Toosi University of ...
Figure 7. Comparison of Archimedean screw power performances P(W) for Q = 0.15 m3 /s and 0.30m3 /s and angles of orientation 22ο & 32ο .

CFD Simulations of Tubular Archimedean Screw Turbines Harnessing the Small Hydropotential of Greek Watercourses

Alkistis Stergiopoulou 1, Vassilios Stergiopoulos 21 Institut für Wasserwirtschaft, Hydrologie und Konstruktiven Wasserbau, B.O.K.U. University, Muthgasse 18, 1190 Vienna, (actually ...
Figure 1: Drawing of the experimental set-up, Figure 2: Experimental tank with locations of temperature sensors

실험 및 수치 시뮬레이션에 기반한 극저온 추진제 탱크 가압 분석

Analyses of Cryogenic Propellant Tank Pressurization based upon Experiments and Numerical SimulationsCarina Ludwig? and Michael Dreyer***DLR - German Aerospace Center, ...
Figure 1: Mold drawings

3D Flow and Temperature Analysis of Filling a Plutonium Mold

플루토늄 주형 충전의 3D 유동 및 온도 분석 Authors: Orenstein, Nicholas P. [1] Publication Date:2013-07-24Research Org.: Los Alamos National Lab ...
Fig. 6 LH2 isotherms at 1020 s.

액체-수소 탱크를 위한 결합된 열역학-유체-역학 솔루션

Coupled thermodynamic-fluid-dynamic solution for a liquid-hydrogen tank G. D. Grayson Published Online:23 May 2012 https://doi.org/10.2514/3.26706 Read Now Tools Share Introduction ...
Numerical modelling of a two-degree-of-freedom Wave Energy Converter

Energy Presentations | 에너지 프레젠테이션

Energy Presentations | 에너지 프레젠테이션

 지난 사용자 컨퍼런스에서 에너지 산업을위한 FLOW-3D의 응용에 초점을 맞춘 사용자 프레젠테이션을 다운로드하십시오  .

2019 년

Numerical modelling of a two-degree-of-freedom Wave Energy Converter: Creation, validation and utilization of the model

2 자유도 파동 에너지 변환기의 수치 모델링 : 모델의 생성, 검증 및 활용

Eliseo Marchesi, Politecnico di Milano / Studio Frosio srl
Marco Negri 및 Stefano Malavasi, Politecnico di Milano
Filippo Palo, XC Engineering Srl

Numerical modelling of a two-degree-of-freedom Wave Energy Converter
Numerical modelling of a two-degree-of-freedom Wave Energy Converter

이 연구의 목적은 FLOW-3D를 통한 수치 모델링입니다., Politecnico di Milano에서 실험실 규모 테스트를 거친 특정 Wave Energy Converter (WEC) : 두 개의 자유도 진동 체 시스템 인 EDS (Energy Double System), 급증하는 패들. 두 본체는 서로 연결되어 있으며 각각은 지상에 반응하는 PTO (Power Take-Off)에 연결됩니다. 수치 모델은주기적인 파동으로 사용 가능한 실험 테스트에 대해 검증되었습니다. 첫 번째 시뮬레이션은 실험실 테스트의주기적인 파동을 재현하는 것을 목표로했습니다. 그런 다음 실험 시스템에 해당하는 EDS의 수치 모델을 생성하고 이전에 모델링 한주기 파를 적용했습니다. 수치 방법의 품질이 확인되면 EDS 시스템의 새로운 구성에 대한 시뮬레이션이 수행되었습니다. 첫 번째 시뮬레이션 시리즈에서는이 매개 변수가 실험 모델에서 최적화되지 않았기 때문에이를 최적화하기 위해 패들 PTO의 댐핑이 변경되었습니다. 그 후, EDS 동작은 이전에 시뮬레이션 된 주기적 파동과 에너지 적으로 동일한 임의 파동에서 조사되었습니다.

다운로드

2015 년

Numerical simulation of extreme wave loading on an axisymmetric point absorber wave energy converter in a survival sea state

생존 해상 상태에서 축 대칭 점 흡수 파 에너지 변환기에 대한 극한 파 하중의 수치 시뮬레이션

Peter Arnold, Minerva Dynamics Limited

생존 해상 상태에서 파력 에너지 변환기 (WEC)가 경험할 수있는 힘과 모멘트의 초기 평가는 개념 설계 단계에서 특히 중요합니다. 현재까지 WEC의 생존 가능성을 평가하는 데 사용되는 주요 방법은 모델 규모 탱크 테스트이지만 일반적으로 10m에서 15m 범위의 상당한 파도 높이를 갖는 생존 파도의 크기로 인해 탱크 테스트 프로그램은 소규모를 사용해야합니다. 관련 계측 및 물리적 확장 문제가있는 스케일 프로토 타입 또는 관련 비용이 더 큰 대형 프로토 타입에 의존합니다. 보다 최근에 CFD는 더 작은 계산 비용으로 인해 불규칙한 파동 스펙트럼과는 반대로, 단독 집중 또는“New Waves”를 사용하여 정적 및 부동 구조에 대한 비선형 파동 부하를 평가하는 데 사용되었습니다. 그러나 이러한 초기 연구는 WEC 설계 엔지니어가 결과 부하의 통계적 분포를 필요로하기 때문에 WEC 생존에 필요한 조건 만 제공하지만 충분하지는 않습니다. 이 연구의 목적은 해법을 얻기 위해 스펙트럼 성분 수와 메시 미세 조정 수준 및 파동 탱크 폭이 감소 된 불규칙 파 스펙트럼을 활용하여 CFD 모델에서 모델링 가정에 첨부 된 중요성을 재분배하는 것입니다. 합리적인 시간 척도로. 그 결과 WEC 운동 및 하중은 주요 통계 매개 변수 측면에서 35 스케일 축 대칭 점 흡수기의 생존에 대한 고 충실도 탱크 테스트 결과와 비교됩니다. 이 연구의 목적은 해법을 얻기 위해 스펙트럼 성분 수와 메시 미세 조정 수준 및 파동 탱크 폭이 감소 된 불규칙 파 스펙트럼을 활용하여 CFD 모델에서 모델링 가정에 첨부 된 중요성을 재분배하는 것입니다. 합리적인 시간 척도로. 그 결과 WEC 운동 및 하중은 주요 통계 매개 변수 측면에서 35 스케일 축 대칭 점 흡수기의 생존에 대한 고 충실도 탱크 테스트 결과와 비교됩니다. 이 연구의 목적은 해법을 얻기 위해 스펙트럼 성분 수와 메시 미세 조정 수준 및 파동 탱크 폭이 감소 된 불규칙 파 스펙트럼을 활용하여 CFD 모델에서 모델링 가정에 첨부 된 중요성을 재분배하는 것입니다. 합리적인 시간 척도로. 그 결과 WEC 운동 및 하중은 주요 통계 매개 변수 측면에서 35 스케일 축 대칭 점 흡수기의 생존에 대한 고 충실도 탱크 테스트 결과와 비교됩니다.

다운로드

Wave propagation and reflection at an inclined plane – simulations and experiments

경사면에서의 파동 전파 및 반사 – 시뮬레이션 및 실험

Boris Huber, 비엔나 기술 대학교

20m 길이의 수로에서 물리적 모델 테스트를 수행하여 수로 끝의 경사면에서 파동 전파 및 반사를 관찰했습니다. 웨이브 생성은 익스텐더 휠에 의해 앞뒤로 움직이는 바닥에 장착 된 패들로 이루어졌습니다. 파도의 전파는 수위 측정에 의해 여러 지점에서 기록되었습니다. 실험은 다양한 파동으로 실행 된 다음 FLOW-3D 로 시뮬레이션되었습니다  . 또한 CFD 시뮬레이션에서 적절한 경계 조건을 얻기 위해 돌과 천공 시트로 구성된 파동 흡수 경계를 사용한 실험을 수행하고 다른 경계 조건에서 시뮬레이션을 실행했습니다.

다운로드

2013 년

Flap type wave power device in near shore conditions

해안 근처에서 플랩 형 파력 장치

Ibis Group, Inc의 Stephen Saunders

FLOW-3D  v10.1을 솔루션 코드로 사용하여 단일 이동 플랩 파 전력 캡처 장치의 CFD 분석을 수행했습니다  . 이 작업의 목적은 프로토 타입을 제작하고 배치하기 전에 의도 한 작업 환경에서 플랩이 겪는 힘을 예측하는 것입니다. FLOW-3D  는 이동하는 공기 / 물 인터페이스의 역학을 캡처하는 데 필요한 강력한 VOF 모델 때문에 경쟁 업체보다이 프로젝트에 선택되었습니다. 또한  FLOW-3D움직이는 고체 물체를 표현하는 FAVOR ™ 방법은 움직이는 플랩을 시뮬레이션하는 데 중요합니다. 플랩 형상의 성능을 시뮬레이션하고 다가오는 파도가 플랩 표면에 수직 인 해안 근처 조건에서 평가되었습니다. 테스트 된 모델은 플랩 끝 주변의 흐름 특성을 평가하기 위해 3D로 구성됩니다. 현재까지 두 개의 바다 상태가 테스트되었습니다. 이들은 플랩에 도달하는 즉시 깨지는 깨지지 않는 팽창 및 파도입니다. 예상대로 깨지지 않는 팽창은 중립의 양쪽에서 동일한 플랩 편향과 거의 대칭 인 부드러운 플랩 동작을 유도합니다. 파동 사례를 깨는 결과는 비대칭 동작과 하중으로 훨씬 더 극적입니다.

다운로드

Ocean waves resonance analysis of an oscillating water column energy converter

진동 수주 에너지 변환기의 해양 파도 공명 분석

José Manuel Grases ; 센데 키아

SDK Marine은 진동하는 수주 챔버 내의 물에 잠긴 수력 터빈을 기반으로 파도에서 전기 에너지를 수집하는 새로운 방법을 개발하고 있습니다. FLOW-3D  는 챔버 내부와 외부의 흐름 동작을 이해하는 데 사용되었습니다. 이 프로젝트의 주요 목표는 내부 수위를 측정하고이를 외부 파 여기와 비교하여 장치의 응답을 얻는 것이 었습니다. 또한 장치의 수력을 계산하기 위해 서로 다른 수력 터빈의 거동을 시뮬레이션하기 위해 서로 다른 다공성 멤브레인을 구현했습니다.

다운로드

Figure2 Outline of a flap gate

FLAP GATE TO PREVENT URBAN AREA FROM TSUNAMI

Osamu Kiyomiya 1, and Kazuya Kuroki 2

1 일본 도쿄 와세다 대학교 토목 공학과 교수
2일본 도쿄 와세다 대학교   토목 공학과 학생

요약

저자들은 쓰나미로부터 보호하기 위해 플랩 게이트를 제안하고 게이트의 특성과 디자인 및 유압에 대한 연구를 시작했습니다. 쓰나미의 위험이 예상되면 몇 분 안에 플랩이 일어 서서 쓰나미 침해로부터 해안 거주 지역을 보호합니다.

이 백서에서는 플랩 게이트 설계에 필요한 파압 및 게이트 동작을 확인하기 위해 보어 파 생성기를 사용하여 수로 탱크에서 2 차원 유압 모델 테스트를 논의합니다. 또한, 모델 테스트 결과를 비교하기 위해 VOF 방법을 사용하여 쓰나미로 인한 수력 특성을 시뮬레이션했습니다.

수치 해석의 결과는 일반적으로 모델 테스트에서 얻은 결과를 추적했습니다. 그러나 수치 해석에서의 파압은 파단 조건에서 모델 시험 결과와 일치하지 않았습니다. Flow 3D에 의한 3 차원 FEM은 또한 플랩 게이트가 포트 입구에 설치된 포트 영역에서 쓰나미의 런업 동작을 시뮬레이션했습니다.

테스트와 계산을 통해 쓰나미 플랩 게이트는 항구 거주 지역에 대한 쓰나미 침해에 효율적입니다.

일본은 많은 생명과 재산을 잃은 해안선을 따라 많은 쓰나미 침해 이력을 가지고 있습니다. 최근에는 쓰나미가 수반되는 대규모 지진으로 인한 피해도 예측하고 있습니다. 따라서 해안 지역의 쓰나미 대책 개선이 요구됩니다. 저자들은 이러한 대책 중 하나로 플랩 게이트의 사용을 제안하고, 현재 수력 학적 특성에 대한 연구를 진행하고 있습니다.

그림 2에서 볼 수 있듯이 플랩 게이트는 하단 가장자리에 핀 메커니즘으로 설계되었으며 일반적으로 해저에 위치합니다. 쓰나미가 해안 지역을 강타 할 것으로 예상되면 플랩의 cell이 공기로 부풀려 부력이 빠르게 위로 떠오르게됩니다.

쓰나미가 지나간 후에는 문에있는 cell에 물이 채워져 다시 해저에 가라 앉습니다. 플랩 작동 시간은 쓰나미에 대해 몇 분으로 설정됩니다. 이탈리아의 “Progetto Moze”에서는 플랩 게이트의 작동 메커니즘이 이미 채택되었지만이 게이트는 폭풍 해일에는 적합하지만 쓰나미에는 적합하지 않습니다.

여기에 소개된 플랩 게이트는 해안 거주지의 쓰나미를 방지하기 위해 만이나 강 하구에 설치됩니다. 이 게이트는 도시의 쓰나미 침해를 막기 위해 해안선을 따라 육지에 설치할 수도 있습니다. 플랩 게이트 설치는 일본의 여러 지역에서 계획 단계에 있습니다. 플랩 게이트의 유효성을 확인하기 위해 유압 모델 테스트와 수치 시뮬레이션을 수행했습니다.  

Figure 1 Tsunami attacks coast line
Figure 1 Tsunami attacks coast line
Figure2 Outline of a flap gate
Figure2 Outline of a flap gate

OUTLINE OF MODEL TESTS

2.1 FLAP GATE 모델을  

부상 플랩 게이트의 두 종류가 있습니다: 첫 번째 유형은 플랩의 하부 표면에 설치된 스토퍼를 사용하여 플랩의 움직임을 제어하고 다른 하나는로드와 케이블로 트러스 메커니즘으로 플랩을 안정화합니다. 플랩은 바다 방향으로 자유롭게 이동하지만 육지로 이동할 수는 없습니다. 닫았을 때 수직이거나 바다쪽으로 기울어 진 플랩에 추가합니다.

Figure 3 Initial stage of the gate / Figure 4 Generation of Tsunami (bore wave)
Figure 3 Initial stage of the gate / Figure 4 Generation of Tsunami (bore wave)

그림 3 게이트의 초기 단계 그림 4 쓰나미 발생 (보어 웨이브) 모델의 규모는 S = 1 / 50으로 설정되었습니다. 플랩의 각도는 75°와 90°로 설정되었습니다. 텐션로드는수평에서 39° 각도로 똑 바르고 기울어 지도록 설정 됩니다. 인장로드는 직사각형 단면이 있는 3 개의 스테인리스 스틸 빔을 사용하여 제조되며 핀으로 연결됩니다. 초기 위치에서 텐션로드는 해저에 세 번 접힌 상태로 설치됩니다. 그림 3은 모델의 초기 설치 위치를 보여줍니다. 쓰나미 지루 파의 도착과 함께 플랩은 부력과 양력으로 인해 위로 떠 오릅니다. 수위가 0 일 때 보어 웨이브가 도착하더라도 수위가 상승하면 플랩이 즉시 위로 쉽게 이동할 수 있습니다. 이것은 플랩 게이트가 해안선을 따라 도로 또는 호안과 같은 육지 지역에 적용 가능하다는 것을 의미합니다. 플랩은 스티렌 폼으로 채워진 아크릴 및 폴리 염화 비닐 플레이트를 사용하여 제조되었습니다.

구조의 질량은 19.4kg이며, 모델 구조는 높이 475mm, 깊이 790mm, 두께 50mm입니다. 테스트는 그림 4에 표시된 게이트 리프트 보어 생성기를 사용하여 유량 탱크에서 수행되었습니다. 실험 수로 치수는 길이 25,000mm, 폭 1,000mm (수류 섹션) 및 높이 1,500mm입니다. 저수조는 수로 좌측에 위치하고 있으며, 무거운 무게로 현관 문 (보어 생성 게이트)을 빠르게 들어 올려 보어 웨이브를 생성합니다. 이 방법은 댐 파괴 방법이라고도합니다. 플랩 모델은 수로의 채널 바닥에 설치할 수 있도록 설계되었으며 길이 735mm, 깊이 100mm입니다.

2.2 측정 방법  

플랩 동작과 쓰나미 파형은 디지털 비디오 카메라를 사용하여 기록되었습니다. 용량 성 파고계 6 대를 설치하여 보어 파의 수위와 유속을 측정 하였다. 유속은 지정된 수위에서 미터 사이의 시간 차이를 측정 한 다음 미터 사이의 거리를 해당 시간 차이로 나누어 계산했습니다. 고정 모형 시험에서는 5cm 간격으로 9 개의 파압 계를 배치하여 파압을 측정 하였다. 진동 모델 테스트에서는 파동 압력 게이지를 5 개 위치에 설치하여 파압을 측정했습니다. 고정 모델 테스트에서는 플랩에서 작동하는 회전 모멘트를 측정하기 위해 플랩의 회전 중심에서 450mm 떨어진 위치에 플랩에 수직 인 위치에로드 셀을 부착했습니다. 진동 모델 테스트에서 스트레인 게이지는로드 장력을 측정하기 위해 플랩의 회전 중심에서 450mm 위치에로드에 부착되었습니다. 회전 모멘트는 힘의 수평 성분을 사용하여 계산되었습니다.  

테스트 결과는 아래 문서를 참고하시기 바랍니다.

Wave Energy Devices

파동 에너지 장치 모델링
최근 몇 년 동안 파력 에너지와 같은 재생 가능 자원을 사용하여 환경 영향이 적은 에너지를 생산하는 신기술 개발에 대한 국제적인 관심이 기하 급수적으로 증가했습니다. 바다 (해류, 파도 등)에서 전기를 유도하는 파동 에너지 장치는 특히 중요하며 FLOW-3D로 정확하게 모델링 할 수 있습니다.

포인트 흡수 장치
점 흡수 장치는 수면의 파도를 사용하여 에너지를 생성하는 많은 파도 장치 중 하나입니다. 포인트 흡수 에너지 장치는 기본적으로 파도에서 에너지를 흡수하고 바닥에 대한 부력 상단의 움직임을 전력으로 변환하는 부동 구조입니다.

이 시뮬레이션은 부력 구형 구조가 위에 있는 포인트 흡수기 장치를 보여주고, 들어오는 파동의 파고와 수조에 따라 위아래로 움직입니다. FLOW-3D의 이동 객체 모델은 x 또는 y 방향으로 이동을 제한하면서 z 방향으로 커플링 모션을 허용하는 데 사용됩니다. 스톡스 유형의 파장은 진폭 5m, 파장은 100m로 사용되었습니다. RNG 모델은 파동이 포인트 업소버 장치와 상호작용할 때 발생하는 난류를 포착하기 위해 사용되었습니다. 예상대로, 많은 난류 운동 에너지가 장치 근처에서 생성됩니다. 그림은 난류로 인해 장치 근처의 복잡한 속도장이 진화하기 때문에 질량 중심의 불규칙한 순환 운동을 보여줍니다.

Multi-Flap, Bottom-Hinged Wave Energy Converter

Oscillating flap은 바다의 파동으로부터 에너지를 추출하여 기계 에너지로 변환합니다. 암은 Water wave에 반응하여 피벗 조인트에 장착된 진자로 진동합니다. 플랩을 배열로 구성하여 멀티플랩파 에너지 변환기를 만들 수 있습니다. 3개의 플랩 배열이 아래 왼쪽에 표시된 CFD 시뮬레이션에서 시뮬레이션됩니다. 모든 플랩은 하단에 힌지로 연결되며 폭 15m x 높이 10m x 두께 2m입니다. 어레이는 깊이 30m에서 주파수가 10초인 4m 진폭 파형으로 작동 중입니다. 시뮬레이션은 한 플랩이 배열 내의 다른 플랩에 미치는 영향을 연구하는 데 중요한 중심 평면을 따라 복잡한 속도 ISO 표면을 보여줍니다. 3개의 플랩이 유사한 동적 모션으로 시작하는 동안, 곧 플랩의 상호 작용 효과가 모션을 위상 밖으로 렌더링합니다. 우측에는 유사한 플랩 에너지 변환기가 표시되어 있습니다. 이 시뮬레이션에서 플랩은 가장 낮은 지점에서 완전히 물에 잠깁니다. 이러한 에너지 변환기를 표면 천공 플랩 에너지 변환기라고 합니다. 이 두 시뮬레이션 예는 모두 미네르바 다이내믹스에 의해 제공되었습니다.

Oscillating Water Column

진동하는 물 기둥은 부분적으로 잠긴 속이 빈 구조입니다. 그것은 물의 기둥 위에 공기 기둥을 둘러싸고 수선 아래의 바다로 열려 있습니다. 파도는 물 기둥을 상승 및 하강시키고, 차례로 공기 기둥을 압축 및 감압합니다. 이 갇힌 공기는 일반적으로 기류의 방향에 관계없이 회전 할 수있는 터빈을 통해 대기로 흐르게됩니다. 터빈의 회전은 전기를 생성하는 데 사용됩니다.

위의 CFD 시뮬레이션은 진동하는 water columns를 보여줍니다. FLOW-3D로 포착된 물리학을 강조하기 위해 물기둥이 중공 구조에서 상승 및 하강하는 부분만 모델링합니다. 시뮬레이션은 파형 생성의 다른 선택을 제외하고 유사한 결과를 전달합니다. 왼쪽의 시뮬레이션은 웨이브 유형 경계 조건을 사용하고 오른쪽의 시뮬레이션은 움직이는 물체 모델을 사용하여 실험실에서 수행한 것처럼 차례로 웨이브를 생성하는 움직이는 플런저를 생성합니다. 각 시뮬레이션에 대해 속이 빈 구조의 압력 플롯이 표시됩니다. 결국 그 압력에 기초하여 터빈이 회전 운동으로 설정되기 때문에 챔버에서 얼마나 많은 압력이 생성되는지 아는 것이 중요합니다.

Wave Forces on Coastal Bridges

Wave Forces on Coastal Bridges

This article was contributed by Jun Jin, Assistant Professor in the Maritime Systems Engineering Department at Texas A&M University at Galveston.

 

최근 몇 년 동안 허리케인은 멕시코만 연안의 4개 주에서 여러 해안 고속도로 교량에 구조적 피해를 입혔습니다. 허리케인 피해를 방지하기 위해 연안 교량에 가해지는 파도 하중의 크기는 합리적인 정확성을 가지고 결정되어야 합니다. 일반적으로 구조에 대한 파도 하중의 계산은 구조 상호작용의 여러 특성으로 인해 복잡해집니다. 이 본문은 이러한 복잡한 문제들 중 해결할 수 있는 몇 가지를 보여줍니다.

Validation of Stokes Nonlinear Wave Solution in FLOW-3D

FLOW-3D는 해안 교량의 파도 하중을 계산하고 구조물 고도 및 녹색갑판 위의 물 하중에 대한 영향을 조사하기 위해 사용되었습니다.  FLOW-3D에서 StokesWave의 정확도를 평가하기 위해 계산 도메인의 세개 지점을 선택했습니다(그림 1). 시뮬레이션을 하는 동안, 각 입자 소스는 초당 10개의 입자를 방출했습니다. 입자 궤적은 그림 1에 표시되어 있습니다. 한 지점의 입자 속도를 이론적 결과와 비교했습니다(그림 2a 및 2b). FLOW-3D에 의해 계산된 입자의 역학은 Stokes비선형 파동이론과 잘 일치한다고 결론내렸습니다.

Figure 1. Particle trajectories and pressure variation during a wave simulation

Figure 2a. Comparison of computed particle velocities of a point with theoretical results

Figure 2b. Comparison of computed particle velocities of a point with theoretical results

 

Wave Loads vs. Superstructure Elevations

다리 갑판을 다른 높이로 설정하고 2m파형 높이와 6초 주기의 파형으로 시뮬레이션을 수행했습니다. 그림 3은 파형력이 최대치에 있을 때의 파동 단면과 압력 등고선을 보여 줍니다.

Figure 3. Wave profile and pressure contours at different moments (Pressure unit: Pa).

Flow Field under Bridge Deck

시뮬레이션은 다른 파도 높이로 실행되었습니다. 그림 4에서 볼 수 있듯이 교량 바닥판 밑의 유동장은 복잡합니다. 대들보와 상부 구조물에 의해 형성된 개방된 공간내에서, 물의 흐름은 경계를 따라 원형패턴으로 있었습니다. 또한 유동의 복잡성은 웨이브 높이가 증가함에 따라 증가하는 것으로 관찰되었다.

Observations

시뮬레이션 결과에서 다음과 같은 결론을 도출할 수 있습니다.

  1. 상부 구조물의 높이가 증가함에 따라 교량 상부 구조물의 수직 방향 파동력이 감소하는 반면, 수평 방향 파형력은 교량의 상부 구조물의 상부 표면이 웨이브 높이의 아래에 있을 때 큰 영향을 미치지 않습니다.
  2. 교량 상층부의 물 하중은 파고와 함께 증가합니다. 파손이 거의 발생하는 경우 최대 물 하중이 최대 수직 파력의 50 %를 초과했습니다. 그러나 그린 워터 하중과 상향 파력 사이의 위상차로 인해 수직 파력의 최대 값은 물의 부하에 의해 현저히 감소하지는 않았습니다.
  3. 교량 상부 구조물 주위의 유동장은 평행한 대들보에 의해 차단됩니다. 그러므로 웨이브 힘에 대한 순전히 기반한 방법은 웨이브 힘을 계산하는데 사용할 수 없습니다.

Figure 4. Vectors of water particle velocity at the moment of maximum wave force (Velocity unit: m/s)

Learn more about the power and versatility of modeling coastal and maritime applications with FLOW-3D>

 

 

Landslide-Induced Wave Hazard

Landslide-Induced Wave Hazard 

Figure 1. The outskirts of Chungtangh village

인도 Sikkim에 위치한 The Teesta III Hydropower Project는 가파르고 좁은 히말라야 계곡에 위치한 60m의 Concrete Face Rockfill Dam (CFRD)이 포함되어 있습니다. 이 계곡은 지진 활동이 활발하며 가파른 경사면은 산사태를 발생시킬 수 있습니다. 댐 상류 저수지의 산사태로 CFRD를 범람할 수 있다는 우려가 있었습니다. 몇 초 이상 과도하게 지속되면 오버플로우로 인해 CFRD가 잘못될 수 있습니다. 비록 댐이 무너지지 않았지만, 여전히 Chungtangh에 있는 상류쪽 작은 마을은 홍수가 날 것이라는 우려가 있었습니다.

Teesta강 계곡의 가장 가파른 경사면은 댐의 바로 상류에 위치해 있는데, 댐의 산사태가 가장 일어날 가능성이 높은 지역입니다. 이 분석의 목적은 저수지에 대한 산사태를 시뮬레이션하고 그 결과로 발생하는 파도가 댐에 넘치는지 여부를 결정하는 것이었습니다.

Moving Objects Model Used to Simulate Landslide                                      

Tecsult는 저수지의 침전물과 퇴적물을 모델링하는데 성공적이었기 때문에 FLOW-3D를 선택하여 이를 시뮬레이션하였습니다. 저수지의 시뮬레이션은 시작점으로 사용되었습니다. FLOW-3D의 Moving Objects모델은 산사태를 시뮬레이션하는데 사용되었으며 VOF모델은 웨이브 생성을 시뮬레이션하는 데 사용되었습니다.

저수지의 산사태를 추정하기 위해서는 여러가지 방법이 고려되었습니다. 경험적 방법은 흔히 산사태가 발생한 파도를 평가하는데 사용되지만, 이러한 방법은 여러가지 면에서 부족합니다. 이러한 방법은 근접 필드 또는 스플래시 영역에 대한 정보를 제공하지 않습니다. 댐은 슬라이드 면과 매우 가깝기 때문에 스플래시 영역을 아는 것이 중요했습니다. CFRD는 몇 초 이상 overflow를 견딜 수 없었습니다. FLOW-3D는 미끄러운 지형 질량과 물 사이의 완전 결합된 상호 작용을 계산하여 시나리오를 3 차원에서 시뮬레이션하는 방법을 제공합니다.

이 문제를 시뮬레이션하기 위해 간단하고 작은 크기의 자유 낙하 블록으로 구성된 실험과 비교하였습니다. 이 경우는 아래 동영상에 나와 있습니다. 그 결과로 생긴 파도 높이는 그 실험과 잘 맞았습니다.

이 모델의 STL파일은 FLOW-3D로 직접 가져옵니다. 예상 산사태 지역의 크기는 지질 정보와 주변 산사태 관측치를 바탕으로 결정되었습니다. 30,000m³, 100m높이의 산사태가 310만 셀의 메쉬로 시뮬레이션 되었습니다. 높이가 1m인 측면 3m의 균일한 셀을 사용했습니다. 최대 슬라이딩 속도는 진입 지점에서 23m/s에 도달했습니다. 파도는 높이 8m, 속도 10m/s로 댐에 도달하여 몇 초 동안 범람했습니다. 그 결과로 상류 마을에서는 홍수가 나타나지 않았습니다.

Figure 3. Prediction of wave height in the splash zone and near field in a small reservoir, with refraction.

Figure 4. Wave heights plotted against each other

Figure 5. Downstream view of TEEST III dam and water intake CATIA model

Conclusions

이 작업의 주된 관심사는 댐의 범람으로 인해 댐과 Chungtangh 마을이 파괴될 수 있었다는 것입니다. 그러나 시뮬레이션에 따르면 댐은 잠시 동안만 범람했고 파도는 마을에 닿지 않았습니다. Chungtangh마을은 강 위에 충분히 높기 때문에, 그것을 범람시키기 위해서는 상당한 파도의 높이가 필요할 것입니다.

 

Aerial Landslide Generated Wave Simulations

Aerial Landslide Generated Wave Simulations

Aerial Landslide Generated Wave(ALGW)는 수역에 영향을 미치는 빠른 슬라이드의 결과이다. 이것은 암석에 의해 생성된 작은 파도 이거나, 3000만 입방 미터의 암석으로 인한 500m를 초과하는 파도 일 수도 있다.
공학적 관점에서 보면 ALGW는 근접한 해안을 따라 인간이 거주하는 인구/자산이 있는 수역에서 발생할 때 큰 관심을 가진다. 여기서 파동이 발생하면 해안선이 파손되고 홍수가 날수 있으며, 댐붕괴로 인한 사망까지 일으킬 수 있다(Müller-Salzburg, 1987). 결과적으로, ALGW에 의해 야기되는 최대 파도 상승을 예측하는 것은 경제적, 환경적, 안전상의 이유로 매우 중요합니다.
안타깝게도 분석적인 솔루션이 없는 매우 복잡한 문제로, 유체 역학적인 측면에서뿐만 아니라 지질학적인 관점(즉, 크기/기하학적인 슬라이드의 밀도 프로파일)에서도 마찬가지입니다. 이와 같이, 대부분의 현장 별 ALGW 최대 파형 예측은 확장된 물리적 모델을 사용하여 평가되었다. 일부는 전산유체역학(CFD) 소프트웨어를 기반으로 할 수도 있지만 비용이 많이 들며, 특히 풀 스케일 3차원 문제의 경우 정확성에 대한 논쟁의 대상이 되고 있습니다.
그러나 컴퓨터 하드웨어와 CFD소프트웨어가 계속 발전함에 따라 이제 CFD를 사용하여 ALGW를 실제로 시뮬레이션할 수 있게 되었습니다. 이와 같이 본 연구는 고 충실도의 물리적 모델 데이터를 FLOW-3D와 비교하여 ALGW를 CFD시뮬레이션을 검증하기 위한 지속적인 노력으로 진척시키는 것을 목표로 한다.
다음 절에서는 실제 및 수치 모델 설정에 대한 개요를 제공한다. 뿐만 아니라, 생성된 데이터와 간단한 비교를 제공한다.

Experimental Setup
물리적 실험은 Northwest Hydraulic Consultants 노스 밴쿠버, 캐나다 실험실에서 만들어졌고 실험을 거쳤다. 그것은 30° 경사의 서쪽 벽을 가진 0.5미터 폭의 수로, 45°의 경사진 동쪽 벽, 그리고 두개의 북쪽과 남쪽 측면에 수직 벽, 그리고 1.025m의 수평 단면을 가진 0.610m 너비의 수로로 구성되었다. ALGW를 생성하고 평가하기 위해, 45° 경사 노즈를 가진 0.177×0.305×0.305m의 아크릴 박스를 사용한 6초 시험을 사용했다.
이 슬라이드를 놓았을 때, 슬라이드는 (중력에 의해) 0.607m 심층수에 충돌하기 전에 서쪽 경사면에서 0.768m 아래로 이동했다. 그 후, 물을 통해 또 다른 1.05m를 이동하여 정지 블록을 치기 시작했다. 슬라이드 가속 및 변위뿐만 아니라 파고 높이는 6 초 실험 전체에 대해 100Hz의 주파수에서 기록되었다. 이 데이터를 수집하는 데 사용 된 도구는 다음과 같다.

  • 컴퓨터화된 데이터 수집 시스템
  • 슬라이드의 시간에 따라 이동 한 거리를 측정하는 문자열 가변 저항기
  • 슬라이드 가속도를 측정하는 1 차원 가속도계
  • 물의 주요 본체 내에 배치 된 3 개의 1 차원 커패시턴스 웨이브 – 프로브
  • 웨이브 런업을 캡처하기 위해 동쪽 경사면을 따라 사용되는 저항 사다리꼴 웨이브 프로브
  • 타이밍 스위치 캡처 슬라이드 릴리스 시간 사용
  • 흑백 비디오 카메라

테스트가 반복 가능하고 오작동이 발생하지 않았는지 확인하기 위해 테스트를 5 번 반복하고 각 장비에 대해 평균을 구했다.

Numerical Model Setup
물리적 실험의 전산화 된 3 차원 모델을 제작한 STL 파일을 FLOW-3D로 가져왔다. 일단 FLOW-3D에 들어간 3D 모델은 약 1,370 만개의 0.0075m 크기의 정사각형 셀로 이산화되었고, 벽을 둘러싸고있는 6 개의면 각각에 ‘wall’경계가 사용되었다.
슬라이드를 일반적인 이동 물체로 설정하고, 물리 모델로부터 수집 된 데이터(즉, 가속 및 변위 데이터의 후 처리)에 기초하여 속도가 주어졌다. 동서면 경사면의 표면 거칠기는 0.00025m으로 설정되었다. 모델링 된 유체는 293k의 물이었고, 동적 RNG 난류 모델이 기본 설정과 함께 사용되었다(implicit pressure solve; and, explicit viscous stress, free surface pressure, advection, moving object/fluid coupling solvers).
물리적 모델과 마찬가지로 FLOW-3D는 6 초의 시간을 시뮬레이트하지만 실제 모델과 같이 매 0.01 초가 아닌 0.02 초마다 데이터를 저장하였다(데이터 관리 관점에서 선택하였음).

Result

FLOW-3D 실험의 결과는 그림에 나와 있다. 4개의 웨이브 각각에 대해 실험 시간 동안 파고를 보여준다. 이와 같이, 제시된 파도 높이는 단순히 flume을 통해 전파되는 파도의 구현(즉, 2 차원의 경우에서 볼 수있는 것)이 아니라 오히려 여러 파도의 상호 작용으로 인한 파도 높이를 초래한다.

  • 슬라이드 충격시 발생하는 충격파(1차 신호)
  • 슬라이드 뒤의 충격파 충돌(2차 신호)
  • 북쪽, 동쪽, 서쪽 및 남쪽 벽에서의 웨이브 반사(3차 신호)

또한 길이 방향의 FLOW-3D 데이터(중심선에서)를 실제 모델 비디오 위에 겹쳐서 자유 표면의 FLOW-3D 글로벌 예측을 평가했다. 이것은 아래의 동영상에서 볼 수 있다.
그림과 위의 비디오를 보면 FLOW-3D 데이터가 웨이브 프로브 1, 2 및 3의 경우 물리적 데이터를 매우 잘 일치한다는 것을 알 수 있다. 하지만 웨이브 프로브 4에 대해서는 정확도가 떨어진다.
FLOW-3D 시간 데이터와 관련된 오류는 각 웨이브 프로브에 대한 RMSE (root-mean-square-error)를 취하여 평가된다.

Discussion
이 조사에서 실제 모델의 고 충실도 데이터는 ALGW로 최대 파도 상승에 대한 FLOW-3D 예측과 비교되었다. RNG 모형의 기본 설정을 사용하여 FLOW-3D는 주요 수역 내에서 파고를 정확하게 재현 할 수 있었다. 그러나 최대 파동은 약 43%가 넘었다.
최대 웨이브 런업을 줄이기 위해 몇 가지 대안인 FLOW-3D 물리 설정이 사용되었다. 그러나 43 % 이하로 떨어지는 것은 불가능했다. 이러한 대체 시뮬레이션에 대한 주목할만한 관찰은 다음과 같다.

  • first-order momentum advection scheme의 0.01m 메쉬는 최대 파동 상승 오차가 96% 인 반면 동일하게 0.0075m 메쉬의 오차는 130%였다. 그러나 second-order로 변경하면 0.01 m 및 0.0075 m 메시의 경우 각각 55% 및 43%의 오차가 발생한다. 또한 메쉬 셀 크기를 0.005m으로 줄이면 80%의 오차가 발생한다.
  • 이 테스트 케이스에서 가장 중요한 매개 변수는 momentum advection scheme이다. 평균적으로 second-order를 사용하면 first-order대비 오차가 약 50% 감소한다.
  • FLOW-3D의 MP 버전을 사용하여 0.005m의 메쉬 셀 크기를 사용해야 한다. 해석 시 CPU 시간은 33 시간이었다. 비교를 위해 FLOW-3D의 SMP 버전은 0.0075m의 메쉬 셀 크기로 시뮬레이션을 실행하는 데 26시간이 필요했지만 MP 버전은 4.5시간 밖에 걸리지 않았다.

[1] 3.5GHz 8 코어 AMD FX-8320 프로세서에서 약 6초의 시뮬레이션 시간이 대략 26시간 소요되었다.

References
Fritz, H. M., Hager, W. H., & Minor, H.-E. (2004). Near Field Characteristics of Landslide Generated Impulse Waves. Journal of Waterway, Port, Coastal & Ocean Engineering, 130(6), 287–302. doi:10.1061/(ASCE)0733-950X(2004)130:6(287)
Miller, D. J. (1960). Giant Waves in Lituya Bay Alaska (Geological Survey Professional Paper No. 354-C). Washington, D.C.: United States Government Printing Office.
Müller-Salzburg, L. (1987). The Vajont catastrophe— A personal review. Engineering Geology, 24(1–4), 423–444. doi:10.1016/0013-7952(87)90078-0

Wave Forces on Coastal Bridges

Wave Forces on Coastal Bridges

This article was contributed by Jun Jin, Assistant Professor in the Maritime Systems Engineering Department at Texas A&M University at Galveston.

 

최근 몇 년 동안 허리케인은 멕시코만 연안의 4 개 주에서 여러 해안 고속도로 교량에 구조적 피해를 입혔습니다. 허리케인 피해를 방지하기 위해 연안 교량에 가해지는 파도 하중의 크기는 합리적인 정확성을 가지고 결정되어야 합니다. 일반적으로 구조에 대한 파도 하중의 계산은 구조 상호작용의 여러 특성으로 인해 복잡해집니다. 이 본문은 이러한 복잡한 문제들 중 해결할 수 있는 몇 가지를 보여줍니다.

Validation of Stokes Nonlinear Wave Solution in FLOW-3D

FLOW-3D는 해안 교량의 파도 하중을 계산하고 구조물 고도 및 녹색갑판 위의 물 하중에 대한 영향을 조사하기 위해 사용되었습니다.  FLOW-3D에서 StokesWave의 정확도를 평가하기 위해 계산 도메인의 세개 지점을 선택했습니다(그림 1). 시뮬레이션을 하는 동안, 각 입자 소스는 초당 10개의 입자를 방출했습니다. 입자 궤적은 그림 1에 표시되어 있습니다. 한 지점의 입자 속도를 이론적 결과와 비교했습니다(그림 2a 및 2b). FLOW-3D에 의해 계산된 입자의 역학은 Stokes비선형 파동이론과 잘 일치한다고 결론내렸습니다.

Figure 1. Particle trajectories and pressure variation during a wave simulation

Figure 2a. Comparison of computed particle velocities of a point with theoretical results

Figure 2b. Comparison of computed particle velocities of a point with theoretical results

 

Wave Loads vs. Superstructure Elevations

다리 갑판을 다른 높이로 설정하고 2m파형 높이와 6초 주기의 파형으로 시뮬레이션을 수행했습니다. 그림 3은 파형력이 최대치에 있을 때의 파동 단면과 압력 등고선을 보여 줍니다.

Figure 3. Wave profile and pressure contours at different moments (Pressure unit: Pa).

Flow Field under Bridge Deck

시뮬레이션은 다른 파도 높이로 실행되었습니다. 그림 4에서 볼 수 있듯이 교량 바닥판 밑의 유동장은 복잡합니다. 대들보와 상부 구조물에 의해 형성된 개방된 공간내에서, 물의 흐름은 경계를 따라 원형패턴으로 있었습니다. 또한 유동의 복잡성은 웨이브 높이가 증가함에 따라 증가하는 것으로 관찰되었다.

Observations

시뮬레이션 결과에서 다음과 같은 결론을 도출할 수 있습니다.

  1. 상부 구조물의 높이가 증가함에 따라 교량 상부 구조물의 수직 방향 파동력이 감소하는 반면, 수평 방향 파형력은 교량의 상부 구조물의 상부 표면이 웨이브 높이의 아래에 있을 때 큰 영향을 미치지 않습니다.
  2. 교량 상층부의 물 하중은 파고와 함께 증가합니다. 파손이 거의 발생하는 경우 최대 물 하중이 최대 수직 파력의 50 %를 초과했습니다. 그러나 그린 워터 하중과 상향 파력 사이의 위상차로 인해 수직 파력의 최대 값은 물의 부하에 의해 현저히 감소하지는 않았습니다.
  3. 교량 상부 구조물 주위의 유동장은 평행한 대들보에 의해 차단됩니다. 그러므로 웨이브 힘에 대한 순전히 기반한 방법은 웨이브 힘을 계산하는데 사용할 수 없습니다.

Figure 4. Vectors of water particle velocity at the moment of maximum wave force (Velocity unit: m/s)

Learn more about the power and versatility of modeling coastal and maritime applications with FLOW-3D>

 

 

수력 경계 조건 / Hydraulic Boundary Conditions

Hydraulic Boundary Conditions

하천이나 강의 도달 범위(river reach)를 수치로 모델링하는 것은 여전히 ​​어려운 일입니다. 주요 과제 중 하나는 실제 모델에 적합한 수력 경계 조건(Hydraulic Boundary Conditions)을 정의하는 방법입니다. CFD 엔지니어들이 실무에 적용하는 일반적인 방법은 선택한 단면의 강에서 유체 높이 및 체적 유량 또는 배출량과 관련된 등급 곡선을 사용합니다. 이러한 데이터를 FLOW-3D에서 사용자에게 제공하기 위해 최근에 새로운 평가 곡선 경계 조건이 개발되었습니다. 이 조건의 추가로 이제 CFD분야 중 강이나 하천 관련 업무를 수행하는 엔지니어는 관심있는 여러 유형의 흐름을 보다 쉽게 ​​모델링 할 수 있습니다. 예를 들면 다음과 같습니다.

  • 수력 구조물 설계를위한 홍수 웨이브 시뮬레이션 (3D 모델)
  • 강 유역 또는 전체 유역의 홍수 시뮬레이션 (2D 천수(shallow water) 모델)
  • “순수 방전”조건은 게이지 데이터를 사용할 수 없고 체적 유량(시간에 따라 달라짐) 만 알려진 경계 조건 설정으로 가능합니다.

새로운 경계 조건은 유동 개발을 위한 추가 모델링 공간이 필요하지 않으므로 입구 경계에서 속도 프로파일이 필요한 다른 응용 분야에  유용합니다.

The Rating-Curve Boundary Condition

등급 곡선은 유체 상승과 강의 방류 흐름과 관련된 단면 하천 특성입니다. 등급-곡선 경계 조건을 사용하면 입구 및 출구 경계 유형 모두에 대한 등급 곡선을 지정할 수 있습니다. 등급 곡선 조건은 시간 의존적인 “볼륨 유량” 경계 조건과 함께 정의할 수 있습니다. 따라서 시간에 의존하는 유체 표고 데이터를 수동으로 입력할 필요가 없으므로 홍수 파동 시나리오를 보다 편리하게 모델링할 수 있습니다. 유출구에 등급 곡선 BC를 사용하면 유출구에 시간 의존적인 압력을 더 이상 지정할 필요가 없습니다. 등급 곡선은 항상 경계에 통합된 시뮬레이션된 볼륨 유량에 해당하는 유체 고도를 제공합니다. 이를 통해 사용자는 자유 표면 표고에 대한 파동 변형 관련 출구 경계 조건을 가질 수 있습니다.

FLOW-3D 는 500 개 이상의 데이터 포인트가 입력 정보로 지정된 외부 파일을 읽을 수 있습니다. 이를 통해 임의의 하천 프로파일에 대해 매우 정확한 레이팅 커브를 입력 할 수 있습니다.

이 비디오는 홍수파 시뮬레이션의 예를 보여줍니다. 입구 경계 조건에는 사고 홍수 파와 관련된 초임계 흐름을 생성하는 등급 곡선이 있습니다. 출구에는 하위 임계 흐름에 대한 등급 곡선 경계 조건이 있습니다. 이러한 경계 조건의 조합은 시간 의존적인 홍수파와 함께 모델링된 도메인에서 유압 점프를 형성합니다. 네 개의 차트는 변화하는 볼륨 유량에 해당하는 경계에서 유체 표고의 변화를 보여 줍니다.

The Volume Flow Rate Boundary Condition

하천의 유속만 입구 경계에서 알 수 있고, 유체 수위정보에 대한 정보를 사용할 수 없는 경우 새로운 경계 유형인 유출만이 유입구에 대해 선택 될 수 있습니다. 그런 다음 FLOW-3D 는 입구 경계 영역에 인접한 영역의 유동 상황에 따라 유체 표고를 설정합니다. 사용자가 제공해야하는 유일한 입력은 볼륨 배출 속도 (시간에 따라 다름)에 따라 최소 유체 상승입니다. 최소 유체 표고는 예를 들어 유동이 아 임계에서 초 임계 정으로 변경되는 것을 방지하는 방법으로 사용됩니다.

이 비디오는 유입구 경계가 하위 임계 볼륨 유량으로 변경되었다는 점을 제외하고 이전 비디오와 동일한 설정을 보여 줍니다. 유입구가 더 이상 초임계 흐름을 강제하지 않기 때문에 모델링된 도메인은 전체에서 하위임계 흐름 상태를 유지합니다.

The Inlet Profile Boundary Condition / 입구 단면 경계 조건

새로 구현된 모든 경계 조건에는 경계 조건 면에 걸쳐 균일한 속도 프로파일이 있습니다. “프로파일 개발 길이”를 줄이는 것이 세 번째 유형의 유압 경계 조건인 유입구 프로파일의 목표입니다. 자연 유입구의 경우 FLOW-3D는 경계에 있는 수심을 도메인 내부의 인접 메쉬 셀과 동일하게 자동 설정합니다. 이렇게 하면 입구 경계 부근의 수위 상승이 방지되고, 물 표면이 영역 내에서 상승할 때 입구의 수면이 상승할 수 있습니다(또는 그 반대).

직사각형 flume에서 완전히 발달된 흐름의 횡단면도

파도 / Waves

파도 / Waves

FLOW-3D 는 비정형 파뿐만 아니라 일반 선형 및 비선형파 표면을 시뮬레이션 할 수 있는 기능이 있습니다. 선형파는 작은 진폭 및 급경사를 갖는 사인파 표면 프로파일을 가지며, 비선형파는 선형 파보다 더 큰 진폭 (유한 진폭), 더 뾰족한 볏 및 평탄한 골짜기를 갖는다. 비선형 파는 파동 문자와 그 해를 구하기 위해 사용 된 수학적 방법에 따라 스톡 (stookes), 코니이드 (cnoidal) 파 및 독방 파로 분류 될 수 있습니다.

그림 1. 다른 진행파의 프로파일 비교
도 1 및도 2에 도시 된 바와 같이, 스톡스 파는 심층 및 과도수의 주기적인 파이다. Cnoidal 파는 천수(shallow water)와 중간 물에서 긴주기적인 파이고 Stokes 파보다 더 뾰족한 볏과 평평한 골짜기를 가지고 있습니다. 스톡스와 코니 형 파와 달리 독방 파는 천수(shallow water)와 과도 수에서 존재하는 비 주기적 파이다. 그것은 하나의 산마루와 물마루를 가지며 완전히 방해받지 않은 수면 위입니다. 수학적으로 파장이 무한대가 될 때 그것은 코니 형 파의 제한적인 경우입니다. 심층수, 과도 수 및 파도에 대한 천수(shallow water)의 분류는 표 1에서 찾아 볼 수있다.

그림 2. 다양한 파도의 적용 범위 (Le Méhauté, 1976, Sorensen, 2005 및 USACE, 2008). d : 평균 수심; H : 파고; T : 파주기; g : 중력 가속도

선형 파 이론 (Airy, 1845)이 많은 응용 분야에서 사용되었지만 비선형 파 이론은 파동의 진폭이 작지 않은 경우 선형 파 이론보다 정확도가 크게 향상되었습니다. FLOW-3D 에서 3 개의 비선형 파 이론이 5 차 스톡스 파 이론 (Fenton, 1985), 스톡스 및 코니이드 파에 대한 푸리에 급수 방법 (Fenton, 1999), McCowan의 독방 파 이론 (McCowan, 1891, Munk, 1949). 그 중에서 Fenton의 Fourier 시리즈 방법은 선형 물, 스톡 (Stokes) 및 코니형 (cnoidal) 파를 포함하여 심층수, 과도 수 및 천수(shallow water)에서 모든 종류의 주기적 전파 파들에 유효합니다. 또한 다른 웨이브 이론보다 정확도가 높습니다 (USACE, 2008). 따라서 모든 수심에서 선형 및 비선형 주기파의 모든 유형을 생성하는 것이 권장되는 방법입니다. solitary wave의 경우, FLOW-3D 에 사용 된 McCowan의 이론은 Boussinesq (1871)에 의해 개발 된 다른 널리 사용되는 이론보다 더 높은 주문 정확도를 갖는다.

그림 3. PM과 JOHNSWAP 스펙트럼 (USCE, 2006에서 적응)

Classificationsd /\lambda
Deep water1/2 to ∞
Transitional water1/20 to 1/2
Shallow water0 to 1/20

불규칙한 물결은 파도의 물성이 일정하지 않은 자연적인 바다의 상태를 나타냅니다. FLOW-3D에서 불규칙한 파동은 다양한 진폭과 주파수 및 임의의 위상 변이를 갖는 많은 선형 성분 파의 중첩으로 표현됩니다. Pierson-Moskowitz (Pierson and Moskowitz, 1964)와 JONSWAP 파력 에너지 스펙트럼 (Hasselmann, et al., 1973)은 FLOW-3D에서 구성 요소 파를 생성하기 위해 구현된다. 다른 웨이브 에너지 스펙트럼은 사용자 정의 데이터 파일을 가져와서 사용할 수 있습니다.

계산 시간을 절약하기 위해 웨이브는 메시 블록 경계에서뿐만 아니라 초기 조건으로 정의 될 수 있습니다.

아래의 애니메이션은 웨이브 초기화가 있거나없는 웨이브의 모든 유형에 대한 예제를 보여줍니다.
선형 및 비선형 수위 시뮬레이션을 위해 FLOW-3D 의 성공적인 적용이 이루어졌습니다. Bhinder 외의 예를 참조하십시오. al (2009), Chen (2012), Hsu et. al (2012) Thanyamanta et. al (2011) 및 Yilmaz et. 자세한 내용은 알 (2011)을 참조하십시오.






References

Airy, G. B., 1845, Tides and Waves, Encyc. Metrop. Article 102.

Bhinder, M. A., Mingham, C. G., Causon, D. M., Rahmati, M. T., Aggidis, G. A. and Chaplin, R.V., 2009, A Joint Numerical And Experimental Study Of a Surging Point Absorbing Wave Energy Converter (WRASPA), Proceedings of the ASME 28th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2009-79392, Honolulu, Hawaii.

Boussinesq, J., 1871, Theorie de L’intumescence Liquide Appelee Onde Solitaire ou de Translation se Propageant dans un Canal Rectangulaire, Comptes Rendus Acad. Sci. Paris, Vol 72, pp. 755-759.

Chen, C. H., 2012, Study on the Application of FLOW-3D for Wave Energy Dissipation by a Porous Structure, Master’s Thesis: Department of Marine Environment and Engineering, National Sun Yat-sen University.

Fenton, J. D., 1985, A Fifth-Order Stokes Theory for Steady Waves, Journal of Waterway, Port, Coastal and Ocean Engineering, Vol. 111, No. 2.

Fenton, J. D., 1999, Numerical Methods for Nonlinear Waves, Advances in Coastal and Ocean Engineering, Vol. 5, ed. P.L.-F. Liu, pp. 241-324, World Scientific: Singapore, 1999.

Hasselmann, K., Barnet, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., Ewing, J. A., Gienapp, H., Hasselmann, D. E., Kruseman, P., Meerburg, A., Muller, P., Olbers, D. J., Richter, K., Sell, W., and Walden, H., 1973, Measurement of Wind-Wave Growth and Swell Decay During the Joint North Sea Wave Project (JONSWAP), German Hydrographic Institute, Amburg.

Hsu, T. W., Lai, J. W. and Lan, Y., J., 2012, Experimental and Numerical Studies on Wave Propagation over Coarse Grained Sloping Beach, Proceedings of the International Conference on Coastal Engineering, No 32 (2010), Shanghai, China.

Kamphuis, J. M., 2000, Introduction to Coastal Engineering and Management, World Scientific, Singapore.

Le Méhauté, B., 1976, An Introduction to Hydrodynamics and Water Waves, Springer-Verlag.

McCowan, J., 1891, On the solitary wave, Philosophical Magazine, Vol. 32, pp. 45-58.

Munk, W. H., 1949, The Solitary Wave Theory and Its Application to Surf Problems, Annals New York Acad. Sci., Vol 51, pp 376-423.

Pierson W. J. and Moskowitz, L., 1964, A proposed spectral form for fully developed wind seas based on the similarity theory of S.A. Kitiagordskii, J. Geophys. Res. 9, pp. 5181-5190.

Thanyamanta, W., Herrington, P. and Molyneux, D., 2011, Wave patterns, wave induced forces and moments for a gravity based structure predicted using CFD, Proceedings of the ASME 2011, 30th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2011, Rotterdam, The Netherlands.

USACE (U.S. Army Corps of Engineers), 2006, Coastal Engineering Manual, EM 1110-2-1100, Washington, DC.

Yilmaz, N., Trapp, G. E., Gagan, S. M. and Emmerich, T., R., 2011 CFD Supported Examination of Buoy Design for Wave Energy Conversion, IGEC-VI-2011-173, pp. 537-541

Wave Energy Devices

Modeling Wave Energy Devices

최근에, 웨이브 에너지와 같은 재생 자원을 사용하여 낮은 환경 부하로 에너지를 생성하는 새로운 기술 개발에 대한 관심이 전 세계적으로 기하 급수적으로 증가하고 있다. 바다에서 (조류, 파도 등) 전기를 생성할 수 있는 파력 에너지 장치는 특히 중요한데 FLOW-3D 를 이용하여 정확하게 모델링 할 수 있습니다.

Multi-Flap, Bottom-Hinged Wave Energy Converter

Oscillating flap은 바다의 파도에서 에너지를 추출하고 기계적 에너지로 변환합니다. Arm oscillates는 피봇 조인트에 장착되어 물결에 진자처럼 동요합니다.  Flaps은 멀티 Flap 파력 에너지 변환기를 생성하는 배열로 구성될 수 있습니다. 아래 왼쪽은 3개의 flap 배열로 구성된 CFD 시뮬레이션 입니다. 모든 flap은 15m(폭) x 10m(높이) x 2m(두께)로 하단부가 경첩형태로 고정되어 있습니다.

Array는 30m 깊이에서 10초의 주파수와 4m 진폭파에서 동작합니다. 시뮬레이션은 하나의 flap이 다른 flap에 중요한 영향을 주는 복잡한 유속 iso-surface를 보여줍니다. 3개의 flap이  비슷한 동적 움직임을 시작하는 동안   flap의 상호 작용 효과 단계에서 그들의 모션을 렌더링 합니다. 유사한 flap 에너지 변환기는 오른쪽에 표시 됩니다.

이 시뮬레이션에서, 플랩은 가장 낮은 지점에서 물에 완전히 잠깁니다. 이러한 에너지 변환기는 Surface Piercing flap energy converters 라고 합니다. 이러한 시뮬레이션의 예제 모두는 Minerva Dynamics에 의해 제공되었습니다.

Oscillating Water Column

Oscillating water column은 부분적으로 물이 차고, 빠지는 것이 반복되는 구조를 가집니다. 이것은 수면(water line) 아래 바다쪽으로 열리고, 파열의 꼭대기의 공기 column에 닫혀진 구조입니다. 파도가 순차적으로 air column을 압축과 해제를 하는 중 상승 및 하강하는 water column을 발생합니다. 이 갇혀진 공기는 일반적으로 공기 흐름 방향에 상관없이 회전 할 수 있는 터빈을 경유해 대기로부터 유동을 만들게 됩니다. 이러한 터빈의 회전은 전기를 생성하는 데 사용됩니다.

상단의 CFD simulation은 진동하는 water column을 보여줍니다. water column 의 상승과 하강구조가 발생하는hollow구조가 물리적인 부분을 강조하기 위하여 FLOW-3D로 모델링 되었습니다. 이 시뮬레이션은 파형 생성에 대한 다른 선택을 제외하고는 유사한 결과를 보여줍니다. 왼쪽의 시뮬레이션은 wave type 경계 조건을 사용하는 반면, 오른쪽 경계조건은 순차적인 파형을 생산하기 위해 Moving Objects model을 이용하였습니다. Hollow 구조에서의 압력 그래프는 각각의 시뮬레이션에서 보여집니다. 결국 터빈은 회전 운동으로 설정되는 압력에 기초하기 때문에, 챔버 내에 생성되는 압력 얼마나 아는 것이 중요합니다.

Wave Energy Animations

제품 소개 요청

FLOW-3D 소개 요청

    회사/기관명* :

    제목* :

    성명* :

    이메일 주소* :

    연락 전화번호* :

    내용 :

    산업 분야별 해석 사례

    FLOW-3D 를 이용한 각각의 산업분야 적용 가능성을 살펴보십시오.
    경험이 풍부한 당사 FLOW-3D  Engineer가 귀하의 궁금하신 사항에 대해 언제든지 답변해 드립니다.

    주조분야
    • Gravity Pour 중력 주조
    • High Pressure Die Casting 고압 다이캐스팅
    • Tilt Casting 경동 주조
    • Centrifugal Casting 원심 주조
    • Investment Casting 정밀 주조
    • Vacuum Casting 진공 주조
    • Continuous Casting 연속 주조
    • Lost Foam Casting 소실 모형 주조
    • Fill and Defects Tracking 용탕 주입 및 결함 추적
    • Solidification and Shrinkage 응고 및 수축 해석
    • Thermal Stress Evolution and Deformation 열응력 및 변형 해석
    물 및 환경 응용 분야
    • Wastewater Treatment and Recovery 폐수 처리 및 복구
    • Pump Stations 펌프장
    • Dams, Weirs, Spillways 댐, 위어, 여수로
    • River Hydraulics 강 유역
    • Inundation & Flooding 침수 및 범람
    • Open Channel Flow 개수로 흐름
    • Sediment and Scour 퇴적 및 세굴(쇄굴)
    • Plumes, Hydraulic Zones of Influence 기둥, 수리 영향 구역
    • Coastal and Critical Infrastructure Wave Run-Up 연안 및 핵심 인프라 웨이브 런업

    에너지 분야
    • Fuel/cargo sloshing in oceangoing containers 해양 컨테이너 용 연료 /화물 슬로싱
    • Offshore platform wave effects 근해 플랫폼 파 영향
    • Separation devices undergoing 6 DOF motion 6 자유도 운동을하는 분리 장치
    • Wave energy converters 파동 에너지 변환기
    미세유체
    • Continuous-Flow 연속 흐름
    • Droplet, Digital 물방울, 디지털
    • Molecular Biology 분자 생물학
    • Opto-Microfluidics 광 마이크로 유체
    • Cell Behavior 세포 행동
    • Fuel Cells 연료 전지들
    용접 제조
    • Laser Welding 레이저 용접
    • Laser Metal Deposition 레이저 금속 증착
    • Additive Manufacturing 첨가제 제조
    • Multi-Layer Build 다중 레이어 빌드
    • Polymer 3D Printing 폴리머 3D 프린팅
    코팅 분야
    • Curtain Coating 커튼 코팅
    • Dip Coating 딥 코팅
    • Gravure Printing 그라비아 코팅
    • Roll Coating 롤 코팅
    • Slide Coating 슬라이드 코팅
    • Slot Coating 슬롯 코팅
    • Contact Insights 접촉면 분석
    연안 / 해양분야
    • Breakwater Structures 방파제 구조물
    • Offshore Structures 항만 연안 구조물
    • Ship Hydrodynamics 선박 유체 역학
    • Sloshing & Slamming 슬로싱 & 슬래 밍
    • Tsunamis 쓰나미 해석
    생명공학 분야
    • Active Mixing 액티브 믹싱
    • Chemical Reactions 화학 반응
    • Dissolution 용해
    • Drug Delivery 약물 전달
    • Drug Particles 마약 입자
    • Microdispensers 마이크로 디스펜서
    • Passive Mixing 패시브 믹싱
    • Piezo Driven Pumps 피에조 구동 펌프
    자동차 분야
    • Fuel Tanks 연료 탱크
    • Early Fuel Shut-Off 초기 연료 차단
    • Gear Interaction 기어 상호 작용
    • Filters 필터
    • Degas Bottles 병의 가스제거

    Fuel Tank Simulation
    Fuel Tank Simulation
    우주 항공 분야
    • Sloshing Dynamics 슬로싱 동역학
    • Electric Charge Distribution 전기 충전 배분
    • PMDs PMD

    aerospace-sloshing-simulation
    aerospace-sloshing-simulation