Figure 4. Calculate and simulate the injection of water in a single-channel injection chamber with a nozzle diameter of 60 μm and a thickness of 50 μm, at an operating frequency of 5 KHz, in the X-Y two-dimensional cross-sectional view, at 10, 20, 30, 40 and 200 μs.

DNA Printing Integrated Multiplexer Driver Microelectronic Mechanical System Head (IDMH) and Microfluidic Flow Estimation

DNA 프린팅 통합 멀티플렉서 드라이버 Microelectronic Mechanical System Head (IDMH) 및 Microfluidic Flow Estimation

by Jian-Chiun Liou 1,*,Chih-Wei Peng 1,Philippe Basset 2 andZhen-Xi Chen 11School of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan2ESYCOM, Université Gustave Eiffel, CNRS, CNAM, ESIEE Paris, F-77454 Marne-la-Vallée, France*Author to whom correspondence should be addressed.

Abstract

The system designed in this study involves a three-dimensional (3D) microelectronic mechanical system chip structure using DNA printing technology. We employed diverse diameters and cavity thickness for the heater. DNA beads were placed in this rapid array, and the spray flow rate was assessed. Because DNA cannot be obtained easily, rapidly deploying DNA while estimating the total amount of DNA being sprayed is imperative. DNA printings were collected in a multiplexer driver microelectronic mechanical system head, and microflow estimation was conducted. Flow-3D was used to simulate the internal flow field and flow distribution of the 3D spray room. The simulation was used to calculate the time and pressure required to generate heat bubbles as well as the corresponding mean outlet speed of the fluid. The “outlet speed status” function in Flow-3D was used as a power source for simulating the ejection of fluid by the chip nozzle. The actual chip generation process was measured, and the starting voltage curve was analyzed. Finally, experiments on flow rate were conducted, and the results were discussed. The density of the injection nozzle was 50, the size of the heater was 105 μm × 105 μm, and the size of the injection nozzle hole was 80 μm. The maximum flow rate was limited to approximately 3.5 cc. The maximum flow rate per minute required a power between 3.5 W and 4.5 W. The number of injection nozzles was multiplied by 100. On chips with enlarged injection nozzle density, experiments were conducted under a fixed driving voltage of 25 V. The flow curve obtained from various pulse widths and operating frequencies was observed. The operating frequency was 2 KHz, and the pulse width was 4 μs. At a pulse width of 5 μs and within the power range of 4.3–5.7 W, the monomer was injected at a flow rate of 5.5 cc/min. The results of this study may be applied to estimate the flow rate and the total amount of the ejection liquid of a DNA liquid.

이 연구에서 설계된 시스템은 DNA 프린팅 기술을 사용하는 3 차원 (3D) 마이크로 전자 기계 시스템 칩 구조를 포함합니다. 히터에는 다양한 직경과 캐비티 두께를 사용했습니다. DNA 비드를 빠른 어레이에 배치하고 스프레이 유속을 평가했습니다.

DNA를 쉽게 얻을 수 없기 때문에 DNA를 빠르게 배치하면서 스프레이 되는 총 DNA 양을 추정하는 것이 필수적입니다. DNA 프린팅은 멀티플렉서 드라이버 마이크로 전자 기계 시스템 헤드에 수집되었고 마이크로 플로우 추정이 수행되었습니다.

Flow-3D는 3D 스프레이 룸의 내부 유동장과 유동 분포를 시뮬레이션 하는데 사용되었습니다. 시뮬레이션은 열 거품을 생성하는데 필요한 시간과 압력뿐만 아니라 유체의 해당 평균 출구 속도를 계산하는데 사용되었습니다.

Flow-3D의 “출구 속도 상태”기능은 칩 노즐에 의한 유체 배출 시뮬레이션을 위한 전원으로 사용되었습니다. 실제 칩 생성 프로세스를 측정하고 시작 전압 곡선을 분석했습니다. 마지막으로 유속 실험을 하고 그 결과를 논의했습니다. 분사 노즐의 밀도는 50, 히터의 크기는 105μm × 105μm, 분사 노즐 구멍의 크기는 80μm였다. 최대 유량은 약 3.5cc로 제한되었습니다. 분당 최대 유량은 3.5W에서 4.5W 사이의 전력이 필요했습니다. 분사 노즐의 수에 100을 곱했습니다. 분사 노즐 밀도가 확대 된 칩에 대해 25V의 고정 구동 전압에서 실험을 수행했습니다. 얻은 유동 곡선 다양한 펄스 폭과 작동 주파수에서 관찰되었습니다. 작동 주파수는 2KHz이고 펄스 폭은 4μs입니다. 5μs의 펄스 폭과 4.3–5.7W의 전력 범위 내에서 단량체는 5.5cc / min의 유속으로 주입되었습니다. 이 연구의 결과는 DNA 액체의 토 출액의 유량과 총량을 추정하는 데 적용될 수 있습니다.

Keywords: DNA printingflow estimationMEMS

Introduction

잉크젯 프린트 헤드 기술은 매우 중요하며, 잉크젯 기술의 거대한 발전은 주로 잉크젯 프린트 헤드 기술의 원리 개발에서 시작되었습니다. 잉크젯 인쇄 연구를 위한 대규모 액적 생성기 포함 [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8]. 연속 식 잉크젯 시스템은 고주파 응답과 고속 인쇄의 장점이 있습니다. 그러나이 방법의 잉크젯 프린트 헤드의 구조는 더 복잡하고 양산이 어려운 가압 장치, 대전 전극, 편향 전계가 필요하다. 주문형 잉크젯 시스템의 잉크젯 프린트 헤드는 구조가 간단하고 잉크젯 헤드의 다중 노즐을 쉽게 구현할 수 있으며 디지털화 및 색상 지정이 쉽고 이미지 품질은 비교적 좋지만 일반적인 잉크 방울 토출 속도는 낮음 [ 9 , 10 , 11 ].

핫 버블 잉크젯 헤드의 총 노즐 수는 수백 또는 수천에 달할 수 있습니다. 노즐은 매우 미세하여 풍부한 조화 색상과 부드러운 메쉬 톤을 생성할 수 있습니다. 잉크 카트리지와 노즐이 일체형 구조를 이루고 있으며, 잉크 카트리지 교체시 잉크젯 헤드가 동시에 업데이트되므로 노즐 막힘에 대한 걱정은 없지만 소모품 낭비가 발생하고 상대적으로 높음 비용. 주문형 잉크젯 기술은 배출해야 하는 그래픽 및 텍스트 부분에만 잉크 방울을 배출하고 빈 영역에는 잉크 방울이 배출되지 않습니다. 이 분사 방법은 잉크 방울을 충전할 필요가 없으며 전극 및 편향 전기장을 충전할 필요도 없습니다. 노즐 구조가 간단하고 노즐의 멀티 노즐 구현이 용이하며, 출력 품질이 더욱 개선되었습니다. 펄스 제어를 통해 디지털화가 쉽습니다. 그러나 잉크 방울의 토출 속도는 일반적으로 낮습니다. 열 거품 잉크젯, 압전 잉크젯 및 정전기 잉크젯의 세 가지 일반적인 유형이 있습니다. 물론 다른 유형이 있습니다.

압전 잉크젯 기술의 실현 원리는 인쇄 헤드의 노즐 근처에 많은 소형 압전 세라믹을 배치하면 압전 크리스탈이 전기장의 작용으로 변형됩니다. 잉크 캐비티에서 돌출되어 노즐에서 분사되는 패턴 데이터 신호는 압전 크리스탈의 변형을 제어한 다음 잉크 분사량을 제어합니다. 압전 MEMS 프린트 헤드를 사용한 주문형 드롭 하이브리드 인쇄 [ 12]. 열 거품 잉크젯 기술의 실현 원리는 가열 펄스 (기록 신호)의 작용으로 노즐의 발열체 온도가 상승하여 근처의 잉크 용매가 증발하여 많은 수의 핵 형성 작은 거품을 생성하는 것입니다. 내부 거품의 부피는 계속 증가합니다. 일정 수준에 도달하면 생성된 압력으로 인해 잉크가 노즐에서 분사되고 최종적으로 기판 표면에 도달하여 패턴 정보가 재생됩니다 [ 13 , 14 , 15 , 16 , 17 , 18 ].

“3D 제품 프린팅”및 “증분 빠른 제조”의 의미는 진화했으며 모든 증분 제품 제조 기술을 나타냅니다. 이는 이전 제작과는 다른 의미를 가지고 있지만, 자동 제어 하에 소재를 쌓아 올리는 3D 작업 제작 과정의 공통적 인 특징을 여전히 반영하고 있습니다 [ 19 , 20 , 21 , 22 , 23 , 24 ].

이 개발 시스템은 열 거품 분사 기술입니다. 이 빠른 어레이에 DNA 비드를 배치하고 스프레이 유속을 평가하기 위해 다른 히터 직경과 캐비티 두께를 설계하는 것입니다. DNA 제트 칩의 부스트 회로 시스템은 큰 흐름을 구동하기위한 신호 소스입니다. 목적은 분사되는 DNA 용액의 양과 출력을 조정하는 것입니다. 입력 전압을 더 높은 출력 전압으로 변환해야 하는 경우 부스트 컨버터가 유일한 선택입니다. 부스트 컨버터는 내부 금속 산화물 반도체 전계 효과 트랜지스터 (MOSFET)를 통해 전압을 충전하여 부스트 출력의 목적을 달성하고, MOSFET이 꺼지면 인덕터는 부하 정류를 통해 방전됩니다.

인덕터의 충전과 방전 사이의 변환 프로세스는 인덕터를 통한 전압의 방향을 반대로 한 다음 점차적으로 입력 작동 전압보다 높은 전압을 증가시킵니다. MOSFET의 스위칭 듀티 사이클은 확실히 부스트 비율을 결정합니다. MOSFET의 정격 전류와 부스트 컨버터의 부스트 비율은 부스트 ​​컨버터의 부하 전류의 상한을 결정합니다. MOSFET의 정격 전압은 출력 전압의 상한을 결정합니다. 일부 부스트 컨버터는 정류기와 MOSFET을 통합하여 동기식 정류를 제공합니다. 통합 MOSFET은 정확한 제로 전류 턴 오프를 달성하여 부스트 변압기를 보다 효율적으로 만듭니다. 최대 전력 점 추적 장치를 통해 입력 전력을 실시간으로 모니터링합니다. 입력 전압이 최대 입력 전력 지점에 도달하면 부스트 컨버터가 작동하기 시작하여 부스트 컨버터가 최대 전력 출력 지점으로 유리 기판에 DNA 인쇄를 하는 데 적합합니다. 일정한 온 타임 생성 회로를 통해 온 타임이 온도 및 칩의 코너 각도에 영향을 받지 않아 시스템의 안정성이 향상됩니다.

잉크젯 프린트 헤드에 사용되는 기술은 매우 중요합니다. 잉크젯 기술의 엄청난 발전은 주로 잉크젯 프린팅에 사용되는 대형 액적 이젝터 [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ]를 포함하여 잉크젯 프린트 헤드 기술의 이론 개발에서 시작되었습니다 . 연속 잉크젯 시스템은 고주파 응답과 고속 인쇄의 장점을 가지고 있습니다. 잉크젯 헤드의 총 노즐 수는 수백 또는 수천에 달할 수 있으며 이러한 노즐은 매우 복잡합니다. 노즐은 풍부하고 조화로운 색상과 부드러운 메쉬 톤을 생성할 수 있습니다 [ 9 , 10 ,11 ]. 잉크젯은 열 거품 잉크젯, 압전 잉크젯 및 정전 식 잉크젯의 세 가지 주요 유형으로 분류할 수 있습니다. 다른 유형도 사용 중입니다. 압전 잉크젯의 기능은 다음과 같습니다. 많은 소형 압전 세라믹이 잉크젯 헤드 노즐 근처에 배치됩니다. 압전 결정은 전기장 아래에서 변형됩니다. 그 후, 잉크는 잉크 캐비티에서 압착되어 노즐에서 배출됩니다. 패턴의 데이터 신호는 압전 결정의 변형을 제어한 다음 분사되는 잉크의 양을 제어합니다. 압전 마이크로 전자 기계 시스템 (MEMS) 잉크젯 헤드는 하이브리드 인쇄에 사용됩니다. [ 12]. 열 버블 잉크젯 기술은 다음과 같이 작동합니다. 가열 펄스 (즉, 기록 신호) 하에서 노즐의 가열 구성 요소의 온도가 상승하여 근처의 잉크 용매를 증발시켜 많은 양의 작은 핵 기포를 생성합니다. 내부 기포의 부피가 지속적으로 증가합니다. 압력이 일정 수준에 도달하면 노즐에서 잉크가 분출되고 잉크가 기판 표면에 도달하여 패턴과 메시지가 표시됩니다 [ 13 , 14 , 15 , 16 , 17 , 18 ].

3 차원 (3D) 제품 프린팅 및 빠른 프로토 타입 기술의 발전에는 모든 빠른 프로토 타입의 생산 기술이 포함됩니다. 래피드 프로토 타입 기술은 기존 생산 방식과는 다르지만 3D 제품 프린팅 생산 과정의 일부 특성을 공유합니다. 구체적으로 자동 제어 [ 19 , 20 , 21 , 22 , 23 , 24 ] 하에서 자재를 쌓아 올립니다 .

이 연구에서 개발된 시스템은 열 기포 방출 기술을 사용했습니다. 이 빠른 어레이에 DNA 비드를 배치하기 위해 히터에 대해 다른 직경과 다른 공동 두께가 사용되었습니다. 그 후, 스프레이 유속을 평가했다. DNA 제트 칩의 부스트 회로 시스템은 큰 흐름을 구동하기위한 신호 소스입니다. 목표는 분사되는 DNA 액체의 양과 출력을 조정하는 것입니다. 입력 전압을 더 높은 출력 전압으로 수정해야하는 경우 승압 컨버터가 유일한 옵션입니다. 승압 컨버터는 내부 금속 산화물 반도체 전계 효과 트랜지스터 (MOSFET)를 충전하여 출력 전압을 증가시킵니다. MOSFET이 꺼지면 부하 정류를 통해 인덕턴스가 방전됩니다. 충전과 방전 사이에서 인덕터를 변경하는 과정은 인덕터를 통과하는 전압의 방향을 변경합니다. 전압은 입력 작동 전압을 초과하는 지점까지 점차적으로 증가합니다. MOSFET 스위치의 듀티 사이클은 부스트 ​​비율을 결정합니다. MOSFET의 승압 컨버터의 정격 전류와 부스트 비율은 승압 컨버터의 부하 전류의 상한을 결정합니다. MOSFET의 정격 전류는 출력 전압의 상한을 결정합니다. 일부 승압 컨버터는 정류기와 MOSFET을 통합하여 동기식 정류를 제공합니다. 통합 MOSFET은 정밀한 제로 전류 셧다운을 실현할 수 있으므로 셋업 컨버터의 효율성을 높일 수 있습니다. 최대 전력 점 추적 장치는 입력 전력을 실시간으로 모니터링하는 데 사용되었습니다. 입력 전압이 최대 입력 전력 지점에 도달하면 승압 컨버터가 작동을 시작합니다. 스텝 업 컨버터는 DNA 프린팅을 위한 최대 전력 출력 포인트가 있는 유리 기판에 사용됩니다.

MEMS Chip Design for Bubble Jet

이 연구는 히터 크기, 히터 번호 및 루프 저항과 같은 특정 매개 변수를 조작하여 5 가지 유형의 액체 배출 챔버 구조를 설계했습니다. 표 1 은 측정 결과를 나열합니다. 이 시스템은 다양한 히터의 루프 저항을 분석했습니다. 100 개 히터 설계를 완료하기 위해 2 세트의 히터를 사용하여 각 단일 회로 시리즈를 통과하기 때문에 100 개의 히터를 설계할 때 총 루프 저항은 히터 50 개의 총 루프 저항보다 하나 더 커야 합니다. 이 연구에서 MEMS 칩에서 기포를 배출하는 과정에서 저항 층의 면저항은 29 Ω / m 2입니다. 따라서 모델 A의 총 루프 저항이 가장 컸습니다. 일반 사이즈 모델 (모델 B1, C, D, E)의 두 배였습니다. 모델 B1, C, D 및 E의 총 루프 저항은 약 29 Ω / m 2 입니다. 표 1 에 따르면 오류 범위는 허용된 설계 값 이내였습니다. 따라서야 연구에서 설계된 각 유형의 단일 칩은 동일한 생산 절차 결과를 가지며 후속 유량 측정에 사용되었습니다.

Table 1. List of resistance measurement of single circuit resistance.
Table 1. List of resistance measurement of single circuit resistance.

DNA를 뿌린 칩의 파워가 정상으로 확인되면 히터 버블의 성장 특성을 테스트하고 검증했습니다. DNA 스프레이 칩의 필름 두께와 필름 품질은 히터의 작동 조건과 스프레이 품질에 영향을 줍니다. 따라서 기포 성장 현상과 그 성장 특성을 이해하면 본 연구에서 DNA 스프레이 칩의 특성과 작동 조건을 명확히 하는 데 도움이 됩니다.

설계된 시스템은 기포 성장 조건을 관찰하기 위해 개방형 액체 공급 방법을 채택했습니다. 이미지 관찰을 위해 발광 다이오드 (LED, Nichia NSPW500GS-K1, 3.1V 백색 LED 5mm)를 사용하는 동기식 플래시 방식을 사용하여 동기식 지연 광원을 생성했습니다. 이 시스템은 또한 전하 결합 장치 (CCD, Flir Grasshopper3 GigE GS3-PGE-50S5C-C)를 사용하여 이미지를 캡처했습니다. 그림 1핵 형성, 성장, 거품 생성에서 소산에 이르는 거품의 과정을 보여줍니다. 이 시스템은 기포의 성장 및 소산 과정을 확인하여 시작 전압을 관찰하는 데 사용할 수 있습니다. 마이크로 채널의 액체 공급 방법은 LED가 깜빡이는 시간을 가장 큰 기포 발생에 필요한 시간 (15μs)으로 설정했습니다. 이 디자인은 부적합한 깜박임 시간으로 인한 잘못된 판단과 거품 이미지 캡처 불가능을 방지합니다.

Figure 1. The system uses CCD to capture images.
Figure 1. The system uses CCD to capture images.

<내용 중략>…….

Table 2. Open pool test starting voltage results.
Table 2. Open pool test starting voltage results.
Figure 2. Serial input parallel output shift registers forms of connection.
Figure 2. Serial input parallel output shift registers forms of connection.
Figure 3. The geometry of the jet cavity. (a) The actual DNA liquid chamber, (b) the three-dimensional view of the microfluidic single channel. A single-channel jet cavity with 60 μm diameter and 50 μm thickness, with an operating frequency of 5 KHz, in (a) three-dimensional side view (b) X-Z two-dimensional cross-sectional view, at 10, 20, 30, 40 and 200 μs injection conditions.
Figure 3. The geometry of the jet cavity. (a) The actual DNA liquid chamber, (b) the three-dimensional view of the microfluidic single channel. A single-channel jet cavity with 60 μm diameter and 50 μm thickness, with an operating frequency of 5 KHz, in (a) three-dimensional side view (b) X-Z two-dimensional cross-sectional view, at 10, 20, 30, 40 and 200 μs injection conditions.
Figure 4. Calculate and simulate the injection of water in a single-channel injection chamber with a nozzle diameter of 60 μm and a thickness of 50 μm, at an operating frequency of 5 KHz, in the X-Y two-dimensional cross-sectional view, at 10, 20, 30, 40 and 200 μs.
Figure 4. Calculate and simulate the injection of water in a single-channel injection chamber with a nozzle diameter of 60 μm and a thickness of 50 μm, at an operating frequency of 5 KHz, in the X-Y two-dimensional cross-sectional view, at 10, 20, 30, 40 and 200 μs.
Figure 5 depicts the calculation results of the 2D X-Z cross section. At 100 μs and 200 μs, the fluid injection orifice did not completely fill the chamber. This may be because the size of the single-channel injection cavity was unsuitable for the highest operating frequency of 10 KHz. Thus, subsequent calculation simulations employed 5 KHz as the reference operating frequency. The calculation simulation results were calculated according to the operating frequency of the impact. Figure 6 illustrates the injection cavity height as 60 μm and 30 μm and reveals the 2D X-Y cross section. At 100 μs and 200 μs, the fluid injection orifice did not completely fill the chamber. In those stages, the fluid was still filling the chamber, and the flow field was not yet stable.
Figure 5 depicts the calculation results of the 2D X-Z cross section. At 100 μs and 200 μs, the fluid injection orifice did not completely fill the chamber. This may be because the size of the single-channel injection cavity was unsuitable for the highest operating frequency of 10 KHz. Thus, subsequent calculation simulations employed 5 KHz as the reference operating frequency. The calculation simulation results were calculated according to the operating frequency of the impact. Figure 6 illustrates the injection cavity height as 60 μm and 30 μm and reveals the 2D X-Y cross section. At 100 μs and 200 μs, the fluid injection orifice did not completely fill the chamber. In those stages, the fluid was still filling the chamber, and the flow field was not yet stable.
Figure 6. Calculate and simulate water in a single-channel spray chamber with a spray hole diameter of 60 μm and a thickness of 50 μm, with an operating frequency of 10 KHz, in an XY cross-sectional view, at 10, 20, 30, 40, 100, 110, 120, 130, 140 and 200 μs injection situation.
Figure 6. Calculate and simulate water in a single-channel spray chamber with a spray hole diameter of 60 μm and a thickness of 50 μm, with an operating frequency of 10 KHz, in an XY cross-sectional view, at 10, 20, 30, 40, 100, 110, 120, 130, 140 and 200 μs injection situation.
Figure 7. The DNA printing integrated multiplexer driver MEMS head (IDMH).
Figure 7. The DNA printing integrated multiplexer driver MEMS head (IDMH).
Figure 8. The initial voltage diagrams of chip number A,B,C,D,E type.
Figure 8. The initial voltage diagrams of chip number A,B,C,D,E type.
Figure 9. The initial energy diagrams of chip number A,B,C,D,E type.
Figure 9. The initial energy diagrams of chip number A,B,C,D,E type.
Figure 10. A Type-Sample01 flow test.
Figure 10. A Type-Sample01 flow test.
Figure 11. A Type-Sample01 drop volume.
Figure 11. A Type-Sample01 drop volume.
Figure 12. A Type-Sample01 flow rate.
Figure 12. A Type-Sample01 flow rate.
Figure 13. B1-00 flow test.
Figure 13. B1-00 flow test.
Figure 14. C Type-01 flow test.
Figure 14. C Type-01 flow test.
Figure 15. D Type-02 flow test.
Figure 15. D Type-02 flow test.
Figure 16. E1 type flow test.
Figure 16. E1 type flow test.
Figure 17. E1 type ejection rate relationship.
Figure 17. E1 type ejection rate relationship.

Conclusions

이 연구는 DNA 프린팅 IDMH를 제공하고 미세 유체 흐름 추정을 수행했습니다. 설계된 DNA 스프레이 캐비티와 20V의 구동 전압에서 다양한 펄스 폭의 유동 성능이 펄스 폭에 따라 증가하는 것으로 밝혀졌습니다.

E1 유형 유량 테스트는 해당 유량이 3.1cc / min으로 증가함에 따라 유량이 전력 변화에 영향을 받는 것으로 나타났습니다. 동력이 증가함에 따라 유량은 0.75cc / min에서 3.5cc / min으로 최대 6.5W까지 증가했습니다. 동력이 더 증가하면 유량은 에너지와 함께 증가하지 않습니다. 이것은 이 테이블 디자인이 가장 크다는 것을 보여줍니다. 유속은 3.5cc / 분이었다.
작동 주파수가 2KHz이고 펄스 폭이 4μs 및 5μs 인 특수 설계된 DNA 스프레이 룸 구조에서 다양한 전력 조건 하에서 유량 변화를 관찰했습니다. 4.3–5.87 W의 출력 범위 내에서 주입 된 모노머의 유속은 5.5cc / 분이었습니다. 이것은 힘이 증가해도 변하지 않았습니다. DNA는 귀중하고 쉽게 얻을 수 없습니다. 이 실험을 통해 우리는 DNA가 뿌려진 마이크로 어레이 바이오칩의 수천 개의 지점에 필요한 총 DNA 양을 정확하게 추정 할 수 있습니다.

<내용 중략>…….

References

  1. Pydar, O.; Paredes, C.; Hwang, Y.; Paz, J.; Shah, N.; Candler, R. Characterization of 3D-printed microfluidic chip interconnects with integrated O-rings. Sens. Actuators Phys. 2014205, 199–203. [Google Scholar] [CrossRef]
  2. Ohtani, K.; Tsuchiya, M.; Sugiyama, H.; Katakura, T.; Hayakawa, M.; Kanai, T. Surface treatment of flow channels in microfluidic devices fabricated by stereolitography. J. Oleo Sci. 201463, 93–96. [Google Scholar] [CrossRef]
  3. Castrejn-Pita, J.R.; Martin, G.D.; Hoath, S.D.; Hutchings, I.M. A simple large-scale droplet generator for studies of inkjet printing. Rev. Sci. Instrum. 200879, 075108. [Google Scholar] [CrossRef] [PubMed]
  4. Asai, A. Application of the nucleation theory to the design of bubble jet printers. Jpn. J. Appl. Phys. Regul. Rap. Short Notes 198928, 909–915. [Google Scholar] [CrossRef]
  5. Aoyama, R.; Seki, M.; Hong, J.W.; Fujii, T.; Endo, I. Novel Liquid Injection Method with Wedge-shaped Microchannel on a PDMS Microchip System for Diagnostic Analyses. In Transducers’ 01 Eurosensors XV; Springer: Berlin, Germany, 2001; pp. 1204–1207. [Google Scholar]
  6. Xu, B.; Zhang, Y.; Xia, H.; Dong, W.; Ding, H.; Sun, H. Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing. Lab Chip 201313, 1677–1690. [Google Scholar] [CrossRef] [PubMed]
  7. Nayve, R.; Fujii, M.; Fukugawa, A.; Takeuchi, T.; Murata, M.; Yamada, Y. High-Resolution long-array thermal ink jet printhead fabricated by anisotropic wet etching and deep Si RIE. J. Microelectromech. Syst. 200413, 814–821. [Google Scholar] [CrossRef]
  8. O’Connor, J.; Punch, J.; Jeffers, N.; Stafford, J. A dimensional comparison between embedded 3D: Printed and silicon microchannesl. J. Phys. Conf. Ser. 2014525, 012009. [Google Scholar] [CrossRef]
  9. Fang, Y.J.; Lee, J.I.; Wang, C.H.; Chung, C.K.; Ting, J. Modification of heater and bubble clamping behavior in off-shooting inkjet ejector. In Proceedings of the IEEE Sensors, Irvine, CA, USA, 30 October–3 November 2005; pp. 97–100. [Google Scholar]
  10. Lee, W.; Kwon, D.; Choi, W.; Jung, G.; Jeon, S. 3D-Printed microfluidic device for the detection of pathogenic bacteria using size-based separation in helical channel with trapezoid cross-section. Sci. Rep. 20155, 7717. [Google Scholar] [CrossRef] [PubMed]
  11. Shin, D.Y.; Smith, P.J. Theoretical investigation of the influence of nozzle diameter variation on the fabrication of thin film transistor liquid crystal display color filters. J. Appl. Phys. 2008103, 114905-1–114905-11. [Google Scholar] [CrossRef]
  12. Kim, Y.; Kim, S.; Hwang, J.; Kim, Y. Drop-on-Demand hybrid printing using piezoelectric MEMS printhead at various waveforms, high voltages and jetting frequencies. J. Micromech. Microeng. 201323, 8. [Google Scholar] [CrossRef]
  13. Shin, S.J.; Kuka, K.; Shin, J.W.; Lee, C.S.; Oha, Y.S.; Park, S.O. Thermal design modifications to improve firing frequency of back shooting inkjet printhead. Sens. Actuators Phys. 2004114, 387–391. [Google Scholar] [CrossRef]
  14. Rose, D. Microfluidic Technologies and Instrumentation for Printing DNA Microarrays. In Microarray Biochip Technology; Eaton Publishing: Norwalk, CT, USA, 2000; p. 35. [Google Scholar]
  15. Wu, D.; Wu, S.; Xu, J.; Niu, L.; Midorikawa, K.; Sugioka, K. Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: The concept of ship-in-abottle biochip. Laser Photon. Rev. 20148, 458–467. [Google Scholar] [CrossRef]
  16. McIlroy, C.; Harlen, O.; Morrison, N. Modelling the jetting of dilute polymer solutions in drop-on-demand inkjet printing. J. Non Newton. Fluid Mech. 2013201, 17–28. [Google Scholar] [CrossRef]
  17. Anderson, K.; Lockwood, S.; Martin, R.; Spence, D. A 3D printed fluidic device that enables integrated features. Anal. Chem. 201385, 5622–5626. [Google Scholar] [CrossRef] [PubMed]
  18. Avedisian, C.T.; Osborne, W.S.; McLeod, F.D.; Curley, C.M. Measuring bubble nucleation temperature on the surface of a rapidly heated thermal ink-jet heater immersed in a pool of water. Proc. R. Soc. A Lond. Math. Phys. Sci. 1999455, 3875–3899. [Google Scholar] [CrossRef]
  19. Lim, J.H.; Kuk, K.; Shin, S.J.; Baek, S.S.; Kim, Y.J.; Shin, J.W.; Oh, Y.S. Failure mechanisms in thermal inkjet printhead analyzed by experiments and numerical simulation. Microelectron. Reliab. 200545, 473–478. [Google Scholar] [CrossRef]
  20. Shallan, A.; Semjkal, P.; Corban, M.; Gujit, R.; Breadmore, M. Cost-Effective 3D printing of visibly transparent microchips within minutes. Anal. Chem. 201486, 3124–3130. [Google Scholar] [CrossRef] [PubMed]
  21. Cavicchi, R.E.; Avedisian, C.T. Bubble nucleation and growth anomaly for a hydrophilic microheater attributed to metastable nanobubbles. Phys. Rev. Lett. 200798, 124501. [Google Scholar] [CrossRef] [PubMed]
  22. Kamei, K.; Mashimo, Y.; Koyama, Y.; Fockenberg, C.; Nakashima, M.; Nakajima, M.; Li, J.; Chen, Y. 3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients. Biomed. Microdevices 201517, 36. [Google Scholar] [CrossRef] [PubMed]
  23. Shin, S.J.; Kuka, K.; Shin, J.W.; Lee, C.S.; Oha, Y.S.; Park, S.O. Firing frequency improvement of back shooting inkjet printhead by thermal management. In Proceedings of the TRANSDUCERS’03. 12th International Conference on Solid-State Sensors.Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664), Boston, MA, USA, 8–12 June 2003; Volume 1, pp. 380–383. [Google Scholar]
  24. Laio, X.; Song, J.; Li, E.; Luo, Y.; Shen, Y.; Chen, D.; Chen, Y.; Xu, Z.; Sugoioka, K.; Midorikawa, K. Rapid prototyping of 3D microfluidic mixers in glass by femtosecond laser direct writing. Lab Chip 201212, 746–749. [Google Scholar] [CrossRef] [PubMed]

Granular Media

Granular 미디어

가공 및 제조 업계에서는 다양한 유형의 The granular media model를 접할 수 있습니다. 특이한 특성으로 인해 입상 재료는 유용한 목적을 위해 전달, 혼합 또는 조작하려는 엔지니어에게 어려운 문제를 제기 할 수 있습니다. 입상 매체 모델은 고체 입자와 기체 또는 액체 (예 : 모래와 공기 또는 모래와 물) 일 수있는 유체의 혼합물의 거동을 예측하는 데 사용됩니다. 입상 고체와 유체의 혼합물은 수수료 표면에 의해 제한 될 수있는 비압축성 유체로 취급됩니다. 입상 매체 모델은 고농축 입상 재료의 흐름을 위해 개발되었습니다. 이 모델은 “연속”접근 방식을 사용합니다. 즉, 모래의 연속적인 유체 표현을 기반으로 하여 개별 모래 입자를 처리하려고 하지 않습니다.

Sand flowing under gravity in two-dimensional hour glass
2 차원 모래 시계에서 중력에 의해 흐르는 모래. 작은 검은 색 선은 속도 벡터입니다. 빨간색은 대부분 완전히 채워진 모래 밀도를 나타냅니다.

Granular미디어 모델링

모래와 공기의 혼합물은 공기와 모래 재료가 개별 속도로 흐르지만 압력 및 점성 응력으로 인한 운동량 교환을 통해 결합되는 2 상 흐름입니다. 전형적인 코어 모래에서 모래 입자의 직경은 약 10 분의 1 밀리미터이며 공동으로 날려지는 모래의 부피 분율은 일반적으로 50 % 이상입니다. 이 범위에서는 모래와 공기 사이에 강력한 결합이 존재하므로 그 혼합물을 단일 복합 유체로 모델링 할 수 있습니다. 두 재료의 속도 차이로 인한 2 상 효과는 Drift-Flux라고 하는 상대 속도에 대한 근사치를 사용하여 설명됩니다.

상대 속도 접근 방식을 사용하는 이 복합 흐름은 입상 매체 모델의 기반으로 선택되었습니다. 모래/공기 혼합물은 주변 공기와의 경계에 날카로운 자유 표면이 있는 단일 유체로 표현 될 수 있다고 가정합니다. 그러나 복합 유체는 모래 다짐 정도에 따라 균일하지 않은 밀도를 가질 수 있습니다. 혼합물의 점도는 밀도와 전단 응력의 함수입니다. 운동량 전달의 대부분은 입자-입자 충돌에 의한 것이기 때문에 모래-공기 혼합물은 전단 농축 물질의 특성을 갖습니다.

캐비티의 순수한 공기 영역을 배출하기 위해 단열 기포로 처리됩니다. 단열 기포는 유체 또는 단단한 벽으로 둘러싸인 공기 영역입니다. 기포의 압력은 기포 부피의 함수이며 기포가 차지하는 영역에서 균일 한 값을 갖습니다. 통풍구는 기포 내의 공기가 공동 외부로 배출되도록 합니다.

Sand Core Blowing Applications

유체와 달리 입상매질에서는 발생할 수 있는 몇 가지 차이점을 설명하기 위해 간단한 2 차원 쐐기 모양 호퍼가 바닥에 1cm 너비 튜브로 설치되었습니다. 시뮬레이션은 바닥 튜브가 비어있는 채로 시작됩니다.

Granular media model
 
Figures 1-4 (From left to right): Initial 2D hopper configuration; Time 1.75s — Vectors are black; Time 3.0s; Time 5.0s

모래는 0.63 부피 분율의 가까운 포장 한계에서 초기화되었습니다. 배출관 입구의 바닥에있는 모래는 중력의 작용으로 떨어지기 시작하지만 위의 거의 모든 모래는 고정되어 있습니다. 1-4, 여기서 색상은 패킹으로 인한 흐름 저항입니다 (빨간색은 완벽하게 단단함). 짧은 시간에 거품과 같은 영역이 형성되고 모래의 윗면을 향해 올라갑니다. 기포가 상단에 도달 할 때까지 기포 표면 주위의 흐름 만 보이며 표면이 붕괴됩니다. 상단 표면의 움푹 들어간 부분은 측면을 34 °의 지정된 안식각으로 줄이는 국부적 흐름을 가지고 있습니다. 한편이 패턴을 반복하기 위해 바닥에 또 다른 거품이 형성됩니다.

이 새로운 모델의 적용을 설명하기 위해 D. Lefebvre, A. Mackenbrock, V. Vidal, V에 의해 “날린 코어 및 금형 설계에서 시뮬레이션 개발 및 사용”논문의 데이터와 비교하기 위해 시뮬레이션을 수행했습니다. Pavan and PM Haigh., Hommes & Fonderie, 2004 년 12 월. 데이터는 하나의 충전 포트가있는 2 차원 다이 형상에 대한 것입니다. 다이의 벤팅은 비대칭 적이 어서 벤트가 충전 패턴에 미치는 영향을 연구 할 수 있었습니다.

시뮬레이션 영역의 크기는 폭 30cm, 높이 15cm, 두께 1cm입니다. 밀도 1.508 gm/cc의 모래 / 공기 혼합물을 상자 입구에서 절대 2 기압의 압력으로 상자에 넣었습니다. 상자의 오른쪽에는 5 개의 열린 통풍구가 있고 상자의 아래쪽과 왼쪽에는 6 개의 통풍구가 더 있습니다. 이 배열은 상자의 비대칭 채우기로 이어집니다.

Sand core blowing continuum model simulation
 
Figure 5:  연속체 모델 시뮬레이션과 실험 데이터의 비교 시뮬레이션 결과는 0.035s, 0.047s 및 0.055s입니다. 색조는 혼합 농도를 나타냅니다.

계산 그리드는 수평으로 80 개의 메쉬 셀과 수직으로 40 개의 메쉬로 구성되었습니다. 시뮬레이션이 완전히 채워진 코어 박스에 도달하는 데 걸리는 시간은 0.07 초 였고 3.2GHz Pentium 4 PC 컴퓨터에서 직렬 모드로 실행되는 CPU 시간이 약 8.9 초가 필요했습니다 (만족할 정도로 작지만 물론 이것은 2D 케이스였습니다. 계산 영역에 3200 개의 셀이 있음).

연속체 모델 시뮬레이션의 결과와 Lefebvre 등 논문의 사진을 비교 한 결과가 그림 5에 나와 있습니다. 시각적 일치는 많은 세부 사항에서 매우 좋은 것으로 보입니다. 시뮬레이션은 왼쪽에 통풍구가 닫혀있는 비대칭 영향을 포착합니다.

Cavitation(공동현상)

Cavitation(공동현상)

공동 현상은 유체 흐름의 압력이 매우 낮거나 온도 상승으로 인해 유체 내에서 증기 및 / 또는 가스 버블이 빠르게 진화하여 포화 압력을 높입니다. 기포의 갑작스런 출현 (및 후속 붕괴)은 비압축성 유체 내에서 압력의 급격한 변화를 일으켜 심각한 기계적 손상을 일으킬 수 있습니다. 캐비테이션에 의해 유발된 힘은 1983 년 글렌 캐년 댐의 유출로에서 발생한 손상으로 볼 수 있듯이 며칠 만에 수 피트의 암석을 침식 할 가능성이 있습니다 (Lee and Hoopes, 1996).

또한, 캐비테이션은 고압 다이 캐스팅에서 발생할 수 있습니다. 다이의 수축 및 곡선을 통한 용융 합금의 빠른 이동은 압력 강하를 빠르게하여 후속 캐비테이션을 유발할 수 있습니다. 생성 된 증기 기포는 최종 주조에서 다공성을 야기하거나, 더 악화되어, 다이를 손상시켜 주조를 오염시키고 다이 수명을 감소시킬 수 있습니다. 이러한 이유로, 캐비테이션이 발생할 가능성이 있는 영역을 이해하는 것이 중요합니다. 물리적 실험을 통해 캐비테이션을 시작하고 시각화하는 것은 어렵고, 잠재적으로 피해를 주기 때문에 공정을 시뮬레이션하는 것이 바람직합니다.

실증 사례

  • 물 및 환경 구조 내에서 손상된 캐비테이션 시뮬레이션
  • 고압 다이캐스팅 중 캐비테이션을 시뮬레이션하여 다이 손상 및 캐스팅 다공성을 유발할 수 있습니다.
  • MEMS 장치 내에서 열 기포 형성 시뮬레이션
  • 열전달 표면의 비등 거동 예측
  • 캐비테이션 역학으로 인한 혼합 예측

Cavitation(공동현상) FLOW-3D모델링

FLOW-3D의 현재 캐비테이션 모델은 열 버블 제트(Thermal bubble jets) 및 MEMS 장치를 시뮬레이션하는 데 성공적으로 사용되었습니다. FLOW-3D는 “Active”또는 “Passive”모델 옵션을 제공합니다. 능동형(Active) 모델은 기포 영역을 열고 수동형 모델은 흐름을 통해 캐비테이션 기포의 존재를 추적하고 전진하지만 기포 영역의 형성은 시작하지 않습니다.

능동형(Active) 모델은 더 큰 캐비테이션 영역이 예상되고 유동장에 영향을 미치는 경우에 가장 적합한 반면, 수동형(Passive) 모델은 작은 기포의 짧은 모양이 예상되는 시뮬레이션에 가장 적합합니다. 에너지 전송의 능동 모델과 계산을 통해 위상 변화(Phase change)도 옵션입니다. 기포는 계면(Surface)에서의 증발 또는 응축으로 인해 추가로 팽창 또는 수축 될 수 있습니다.

해석 사례

아래의 결과는 8m/s의 진입 속도, 18°의 수렴 기울기 및 8°의 발산 기울기를 가진 벤투리(Venturi) 내의 캐비테이션을 보여줍니다. 캐비테이션의 과도 거동이 잘 모델링되었으며, 모델은 22ms의 실험 결과와 비교하여 17.4ms의 캐비테이션 사이클 주기(Cycle period)를 예측합니다 (Stutz and Reboud 1997).

물 탱크를 통과하는 고속 발사체를 시뮬레이트하여 발사체의 웨이크에서 발생하는 저압 영역에서 공동화 깃털(Cavitation jets)을 보여줍니다. 발사체의 초기 속도는 600m/s입니다. 아래는 탱크에서의 움직임과 후미 캐비테이션 유체의 해석 결과입니다. 캐비테이팅 플룸(Cavitating plume)의 반경은 발사체가 감속함에 따라 좁아집니다.

참고 문헌

  • Lee, W., Hoopes, J.A., 1996, Prediction of Cavitation Damage for Spillways, Journal of Hydraulic Engineering, 122(9): 481-488.
  • Plesset, M.S., Prosperetti, A., 1977, Bubble Dynamics and Cavitation, Annual Revue of Fluid Mech, 9: 145-185.
  • Rouse, H., 1946. Elementary Mechanics of Fluids, New York: Dover Publications, Inc.
  • Stutz, B., Reboud, J.L., 1997, Experiments on unsteady cavitation, Experiments in Fluids, 22: 191-198.

[FLOW-3D 물리모델]Granular Flow / 입상유동

 Granular Flow / 입상유동

입상유동은 고상입자와 기체나 액체(예를 들어 모래와 공기 또는 모래와 물)인 유체와의 혼합물이다. 입상고체와 유체의 혼합물은 자유표면 경계에 의해 경계가 정해질수 있는 비압축성유체로 간주된다. 혼합 유체에서의 밀도변화는 초기에 존재할 수 있고 Drift-Flux 모델을 사용하여 계산되는 고체와 유체의 상대속도 때문에 유동중에 발생할 수도 있다. 자유표면에서의 가스의 방출은 고체가 입상간의 가스를 밀어내며 단단해질 때 발생할수있다. 액체의경우 고상이 단단해질 때 순수액체지역이 형성될수있다,

이 모델을 활성화하기 위해 General One fluid option Physics Granular Flow Granular Flow in Gas 또는 Physics Granular Flow Granular Flow in Liquid (Slurry)를 선택한다. 입상유동 창이 보이는데 여기서 입자의 직경 및 미시적 밀도와 유체의 밀도 및 점도가 정의되어야 한다. 필요하다면 고상의 최대 close packing 체적율 과 mechanical jamming 체적율이 각기 디폴트인 0.36과 0.61로부터 변경될 수 있다. 또한 자유표면의 an angle of repose(안식각?) 은 디폴트 값인 34도가 모델링하는 고상에 대해 맞지 않으면 변경될 수 있다.

입상유동을 선택하면 이는 자동으로 이 모델에서 사용되는 프로그램 내의 대 여섯 가지 모델을 활성화 시킨다. 또한 혼합물의 점도는 이 모델에서 계산되므로 정의하는 것이 불필요함에 주목한다. 사실 Fluids tab 에있는 어떤 유체물성도 정의할 필요가 없다.

입상물질이 격자 경계를 통해 계산 영역으로 들어오면 close packing 의 밀도보다 작은 고상율을 갖는 고상/기체 혼합물의 밀도를 정의하는 것이 중요하다. 그렇지 않으면 유동이 없을 것이다.

두 개의 보조 입력변수들이 있다. 하나는 Multiplier in threshold packing velocity 이고 다른 하나는 Multiplier in packing drag 이다. Multiplier in threshold packing velocity 는 이 속도 이상에서 packed solid material 의 유동을 결정하고 Multiplier in packing drag 는 입상이 충분히 높은 밀도로 packing될 때 유동을 정지시키는데 이용된다. 이 두 변수 모두 사용자가 입상체가 이 값을 변형시키는 응집력이나 다른 힘을 알지 못한다면 디폴트 값으로 남겨져야 한다.

또 다른 보조 입력 량은 마찰 각도인데 이는 보존각도보다 2~8도정도 크다. 마찰 각도는 액체인 유체의 경우에 중요하며 이 경우 마찰각도는 고상간의 충돌로 인한 전단유동 시 발생하는 분산압력에 영향을 미친다.

Granular flow application example: Core Blowing / 입상유동응용예제: 코어블로잉

코어블로잉 공정은 공기/모래 혼합물을 코어몰드에 고속 충진하는 것을 포함한다. FLOW-3D 는 코어블로잉을 각 모래 입자가 아닌 2상 연속체로 모델링 한다. 2상의 영향(공기/모래 결합)은 Drift Flux 모델을 사용하여 모델링 된다. 공기/모래 혼합물은 순수 공기와 선명한 경계면을 갖는 1유체로서 모델링 된다. 순수공기는 단열 기포로 나타내진다. 벤트는 밸브로 정의된다. 어떻게 이 모델이 실행되는지에 대한 더 많은 정보는 Flow Science Technical Note 88 at 테크니컬 노트notes/default.asp를 참조하라.

코어블로잉 모사(simulate)를 시작하는 단계는

  1. STL 파일로부터 관련 형상을 읽어 들여 생성하거나 Model Setup –> Meshing & Geometry 탭에있는 FLOW-3D 기초요소를 사용하여 형상을 생성한다.
  2. 다음 물리적 특성을 활성화하고 Model Setup Physics 탭에있는 변수들을 정의한다.

(a)   올바른 방향에서 중력을 정의하기 위해 Gravity and non-inertial reference frame 모델을 사용한다.

(b)   Viscosity and Turbulence 대화창에서 Viscosity and Laminar flow 를 활성화한다.

(c)    Activate the Granular Flow model.  Granular Flow 모델을 활성화한다.

  • Granular Flow in Gas 선택은 모래입자가 주위 매질보다 훨씬 밀도가 높다고 가정하는 Granular Flow 모델을 활성화한다.
  • Global vent 는 모래를 통과하는 공기의 전반적 배출을 조절한다. Global vent coefficient 는 모래 와 모래의 막힘에 의한 출구면적 감소에 따른 평균 손실을 나타내는 승수이다. 또한 모든 밸브의 외부압력과 모든 밸브 승수의 평균을 취한다. 추정치는 다음 식으로부터 계산될 수 있다.

여기서 Cv,g Global vent coefficient,  는 최대가능 고상율, L 은 공기 기포와 출구사이의 평균거리, 그리고 dgAverage grain diameter 이다.

  • Mechanical jamming volume fraction 은 모래의 체적율로 이 값 이상에서는 입상간의 상호작용에 의해 유동에 저항이 발생한다. 사용하기에 맞는 값은 0.61이다.
  • Close packing volume fraction 은 유동이 정지하게 되는 모래의 체적율을 기술한다. 체적율이 0.995(Close packing volume fraction) 를 넘게 되면 그 요소내의 속도는0으로 된다. 모래입자가 구형일 때 이는 일반적으로0.63이다.
  • Average grain diameter Grain density 는 정의되어야 하고 제조사로부터 알 수 있다. Gas density Gas viscosity 또한 정의되어야 한다. CGS 단위로 공기의 표준값은 각기 0.001225 g/cm3 와0.00017 poise 이다.
  • Multiplier in threshold packing velocity 와 Angle of repose 는 코어블로잉 모델링에는 필요하지 않다.
  • 입상 반발계수는 고체표면과 충돌 후에 모래입자가 유지하는 에너지의 양을 추정하는데 사용된다.

(d)    Density Evaluation 모델을 활성화한다. 일단 Granular Flow 가 활성화되면 First order approximation to density transport equation 이 자동적으로 가능하게 된다. 이는 모래의 전달을 계산하는데 필요하다. 더 나은 공간적 정확성을 위해 Second order monotonicity-preserving approximation to density transport equation 이 선택될 수 있다. 이는 모래의 농도가 급격히 변할 것으로 예측되는 모사(simulate)에 유용할 수 있다.

(e)   가스를 배출시키기 위해서는 Bubble and Phase Change 모델을 활성화시킨다. 이는 배출구와 밸브를 사용하기 위한 필요조건이다.

  1. 초기조건과 경계조건은 Meshing & Geometry 탭에서 추가될 수 있다. 공간 또는 기포영역의 초기조건은 이미 Adiabatic bubble 모델이 Bubble and phase change 모델에서 활성화될 때 정의된다. 경계조건은 Meshing Mesh Block 1 Boundaries 에서 정의된다. 모래는 공기압에 의해 코어상자를 통해 이동되므로 압력경계조건과 공기/모래 혼합물의 밀도가 경계에서 적용되어야 한다. S(대칭경계를뜻하는)를 갖는 적절한 경계상자를 택하면 경계대화상자가 나타날 것이다. Specified pressure 무선 버튼을 선택하고 입구압력, 유체율 1.0, 그리고 밀도를 정의한다.

  1. 단지 몇 개의 배출구만 있다면 밸브를 추가하거나 배출구가 너무 많아 수의 밸브로 추가할 수 없으면 Granular Flow Vent 로 정의된 형상을 사용한다. 밸브유동손실은 Bernoulli 의 차단 이론으로부터 유도된다. 밸브 생성에 관한 세부내용은 Valves 에서 찾아볼 수 있다. 배출구를 형상요소로 추가하기 위해 Meshing & Geometry 가지에서 별도 구성요소를 생성한다. 이는 배출구는 독자적 물성을 가지며, 형상요소는 그들의 물성과 운동에 따라 분류되어 있기 때문이다.

이렇게 모델링 될 때 배출구는 체적이 없다. 배출구가 같은 크기이면 이들은 하나의 STL 로써 또는 같은 구성요소의 기초요소를 사용하여 모델링 될 수 있다. 다른 크기라면 이들은 별도로 모델링 되어야 한다. 이들을 배출구로 정의하기 위해 Component Type drop down Granular Flow Vent 로부터 선택한다. 일단 형태가 정해지면 물성이 정의되어야 한다. Model Setup Meshing & Geometry Component Component Properties Granular Flow Vent Properties 에서 the Vent Flow Area, Diameter of Vent Channel 그리고 Vent External Pressure 를 정의한다.

See also: 또한 참조하라

  • Adiabatic Bubbles 단열기포
  • Flows with Density Variations 밀도 변화를 갖는 유동
  • Granular Flow. 입상유동

[FLOW-3D 물리모델]Condensation, Evaporation at Free Surfaces / 자유표면에서의 응축, 기화

Condensation/Evaporation at Free Surfaces자유표면에서의 응축/기화

1. Vaporization at Free Surfaces 자유표면에서의 기화

자유표면에서 발생하는 기화효과는 공간에서 정의된 일정 포화상태의 견지에서 모델링 될 수 있다. 이 모델을 활성화하기 위해 Physics>Bubble and phase change models>Constant pressure bubble with vaporization 를 선택한다. Fluids>Properties>Phase Change 에서의 Saturation Temperature 는 공간내의 기포의 포화상태를 정의한다. 기화 잠열은 Fluids>Phase change>Latent Heat of Vapor 에서 지정된다.

유체 에너지 방정식(열전달)은 이 모델(Physics>Heat Transfer)과 함께 해석되어야 한다. Fluids> Properties>Phase Change 에있는 Accommodation coefficient 에 양의 값을 정의한다. 자유 표면상의 액체의 온도가 포화 온도보다 높다면 액체는 다음과 같은 율로 증발할 것이다.

  • α 는 기화율을 조절하는 Accommodation coefficient이다. 이 값은 일반적으로 0.01에서0.1사이이며 1.0을 넘지 말아야 한다.
  • Hv 는 기화 잠열이다.
  • Asur 는 상변화를 위한 유효표면적이다.
  • kf 는 액체의 열전도도이다.
  • Tl 는 표면상 액체 온도이며
  • Tv1는일정한 기포 포화 온도이다
  • h 는 Prandtl 수로 정의된 표면에 있는 액체의 열전도에 대한 특정 길이이다.

여기서

  • xmin 는 (임의의 방향으로)계산 격자의 최소 셀 크기
  • Cv 는 일정 체적시의 기포 비열이며
  • µ1는 유체 #1의 점도이다.

각 표면 셀에서 기화하는 질량 유량은 후처리를 위해 저장되고 Analyze 에서 가시화될 수 있다.

기화는 자유 표면을 포함하는 셀들에서만 발생될 수 있다. 기포 포화온도는 일정 또는 변동압력을 갖는 모든 공간에 대해 일정하며 같다.

2. One Fluid with Thermal Bubbles 열기포를 갖는 하나의 유체

액체-증기 상변화에 의한 질량 전달은 열기포와 주위 액체 사이에 발생할 수 있다. 기포는 유체 #1 이 증기로 차 있다고 가정하고(즉, 기체 성분은 하나다.) 기포는 일정 압력, 온도, 그리고 밀도를 갖는다. 많은 기포 방울들이 있을 수 있고, 각 기포에서의 증기는 체적 변화와 열 및 질량 전달 때문에 고유한 시간에 따라 변하는 상을 갖는다. 유체 분율이0인 지정 압력의 격자 경계와 접하는 기포는 그 경계에서 정의된 기화 상태를 가질 것이다. 기화/응축모델은 Physics>Bubble and phase change models>Thermal bubbles with phase change 에서 활성화된다.

증기의 상태방정식은 이상 기체 방정식이며 절대 압력 P P = (γ − 1) · ρvapCvT 로부터 계산되는데 여기서

  • γ 는 1.285 ≤ γ ≤ 1.667값을 갖는 비열의 비율
  • T 는 절대온도
  • Cv 는 일정 체적에서의 증기의 비열
  • Cp 는 일정 압력에서의 증기의 비열
  • ρvap 는 기포 내의 증기 밀도

기포는 절대 단위로 이들의 초기 압력과 온도를 지정함으로써 초기화된다. 증기는 또한 Cavitation and Bubble Formation (Nucleation)에서 기술된 바와 같이 공동 또는 비등 과정을 통해 유체 내에서 생성될 수 있다. 증기 물성과 포화 곡선은 Fluids>Properties>Phase change 하위 메뉴에서 정의된다. 증기 압력은 사용자가 정의한 포화 곡선을 이용하여 그 지역의 유체 온도의 함수로써 계산된다. 디폴트 포화 곡선은 압력 P 와 온도 T 간의 Clausius-Clapeyron 관련식이다.

여기서

  • PV 1 TV 1(위의 물성치 목록에서 Saturation Pressure Saturation Temperature라고 쓰여있는) 는 포화곡선상의 한 점에서의 압력과 온도이다.
  • TEXPExponent for T-P Curve 로써 입력된다; 이의 값은 일반적으로
  • γ 는 증기의 비열 Gamma
  • Cv 는 일정 체적시의 기체 비열
  • Hv 는 기체의 잠열

형상 요소와 기포 내 증기간의 열전달은 Meshing & Geometry>Geometry>Component>Surface properties 의 component-void간의 열전달 계수에 의해 지정된다. 액체와 기포 내 증기와의 열전달도 마찬가지로 유체-void간의 열전달 계수에 의해 지정되어야 한다. 새로 생성된 증기기포는 heat transfer void type 1로 지정되는 것에 주목한다. Physics>Heat transfer>Fluid to solid heat transfer 가 증기 기포와 고체 요소간의 열전달을 가능하게 하기 위해 활성화되어야 한다.

상 변화는 계산 셀 내의 평균 유체 물성(밀도, 열에너지 그리고 액체분율)에 의존한다. 특히 액체와 증기의 온도는 한 요소에서 같으며, 표면의 얇은 유체막에서의 온도가 아니다. 이런 의미에서 상변화 모델은 현상학적이고 상변화율을 조절하기 위해 accommodation coefficient 의 조정이 필요하다. 1보다 큰 값은 사용되지 않아야 하는데, 이는 이 모델의 수렴이 힘들게 될 수도 있기 때문이다. 사실 일반적으로 사용되는 값들은 0.01과 0.1사이이다.

3. Two-fluid Model 두가지 유체 모델

이 모델은 증기 영역에서 모든 역학이 계산되는 것을 제외하고는 응축/기화 모델 (One Fluid with Thermal Bubbles)과 유사하다. 이 경우 압축 two-fluid 모델(비압축성 유체와 압축성 증기)은 경계면에서 발생하는 액체-증기 상변화가 가능하다. 순수 액체 지역에서의 핵 생성 또는 순수 증기 지역에서의 응축이 또한 가능하다. 유체 #1은 유체의 액상을 그리고 압축성 유체 #2(가스)는 증기를 기술한다. 표준 압축성 유동 모델에서와 같이 증기의 상태 방정식은 이상 기체 방정식, P = RF2 · ρ · T 이며 여기서.

  • RF2 는 증기의 기체상수
  • P 는 압력
  • ρ 는 기체 밀도
  • T 는 증기의 온도

two-fluid 상변화 모델은 Physics >Bubble and phase change models> Two-fluid phase change 에서 초기화되며, Fluids>Properties>Phase change 에서 양의 accommodation coefficient 를 필요로 한다. 상변화율은 직접적으로 accommodation coefficient 에 비례한다. 이 값은 절대적인 제한은 아니지만 일반적으로 0.01에서0.1사이이며 1.0을 넘지 말아야 한다. 증기 물성은 압축성 유체2의 물성으로 정의되며 증기 잠열과 포화곡선은 Fluids>Properties>Phase change 에서 정의된다. 포화 압력과 포화 온도로 정의되며 쌍으로 나타나는 압력-온도는 포화 곡선상의 한 점이어야 한다. T-P 곡선상의 지수는 온도-압력 포화관계의 지수이다. 디폴트 포화곡선은 압력 P 와 온도 T 간의 Clausius-Clapeyron 관련식이다.

여기서

  • PV 1 TV 1(위의 물성 목록에서 Saturation Pressure Saturation Temperature라고 쓰여있는)는 포화 곡선상의 한 점에서의 압력과 온도
  • TEXPExponent for T-P Curve 로써 입력된다; 이 값은 일반적으로 TV EXP = (γ − 1) CLHVCV 2 1
  •  Gamma 는 증기의 비열의 비율
  • CV 2 는 일정 체적시의 기체 비열
  • CLHV 1는 증기 잠열(단위질량당 에너지)

상변화는 유한 체적 내의 평균 유체 물성(밀도, 열에너지 그리고 액체분율)에 의존한다. 특히 액체와 증기의 온도는 한 요소에서 같다. 액체와 증기 경계면에서의 질량 전달율은 국부적 액체의 포화압력과 증기압사이의 차이에 의하여 계산된다.

Mass transfer rate

여기서

  • Pvap 는 증기압
  • Psat(T) 는 위에서 정의된 바와 같이 지역온도에서의 포화압력이다. 사용자가 필요에 따라 변경할 수 있는 subroutine PSAT.F에서 계산된다.
  • RSIZEAccommodation coefficient 이고 일반적으로 0.01과 0.1사이의 값이다.

액체와 증기경계에서 유체 질량의 단위면적당 상변화율이 계산되고, 후처리를 위해 Phase change mass flux 라고 불리는 공간변수로써 저장된다.
양의 값은 증발을 뜻한다:
음의 값은 응축.

액체 체적에서의 상변화는 Superheat temperature 를 지정함으로써 포화온도를 지나서까지 지연될 수 있다. 지역 포화온도보다 큰 Superheat temperature 의 값 때문에 증기 기포가 발생하기 전에 이 온도까지 유체 체적이 가열되는 것이 가능하다. 과열은 선택에따라 0이 아닌 벽의 거칠기를 사용함으로써 고체 벽 가까이에서 발생하지 않도록 할 수 있다.

4. Two Fluids with Non-condensable Gas / 비 응축가스를 갖는 Two Fluids

 

보통, 응축/기화 모델(two-fluid 모델)은 유체 #2가 완전히 액체의 증기상으로 이루어진다고 가정한다. 가스가 증기와 비응축가스(즉, 공기중의 수증기)의 혼합물로 구성되어 있는 경우에 Physics>Bubble and phase change>Two-fluid phase change>Noncondensable gas model 를 선택한다. two-fluid vapor 모델의 추가는 증기와 비응축가스의 기체상수들의 밀도 가중 평균 혼합물의 기체상수의 계산을 포함한다:

여기서

  • ρvap 는 계산된 거시적 증기밀도
  • ρnc 는 계산된 거시적 비응축 기체 밀도
  • RF2는 증기의 기체상수
  • RF 는 평균기체상수

그러므로, 압력은 P = RFρT 로 계산된다. 증기의 포화압력은 상변화(Two-fluid Model), 를 갖는 표준 Two-fluid 모델에서와 같은 방법으로 계산되지만, 질량 유량은 전체 가스압력을 사용하는 것과는 달리 증기의 부분압력을 이용하여 계산된다.

Mass transfer rate

여기서

  • Pvap 는 가스성 유체의 증기의 부분압력
  • Psat(T) 는 사용자가 필요에 따라 변경할 수 있는 subroutine PSAT.F에서 정의되는 Clausius-Clapeyron 방정식으로부터 계산되는 국부 온도에서의 포화압력이다.
  • RSIZEAccommodation coefficient 이고 일반적으로 0.01과 0.1사이의 값이다.

Accommodation coefficient 가 1.0의 값을 가진다면 모델은 한 시간단계에서 평형에 도달하기에 충분한 상변화를 예측하려고 시도할 것이다. 이 속도는 너무 급속해 실제 물리적조건과 비교될 수가 없다. 액체와 가스의 경계면의 경계층 내의 역학은 규모가 너무 작아 이 모델에 포함할 수 없으므로 FLOW-3D 가 정확히 이 계수 없이 상변화율을 예측하는 것은 불가능하다. .

이 모델을 이용하기 위해 Physics>Bubble and phase change models>Non-condensable gas model 의 체크상자를 선택한다. Gas constant Specific heat of the non-condensable gas 를 위한 값을 입력한다. 가스가 영역 경계에서 들어오는 곳에 각 mesh block 경계 조건 입력창에 있는 Non-condensable gas fraction 의 비응축가스의 체적율(0 과 1사이)을 지정한다. 비응축가스를 포함하는 초기 유체지역을 정의하기 위해 Meshing & Geometry>Initial>Global 를 지정한다. 이 양은 또한 각각의 초기유체 영역과 특정 지점에서 지정될 수 있다.

5. Vaporization Residue / 증발 잔류량

MAIN VARIABLES: SCALAR: IRESID, RMXSC
XPUT: IPHCHG

액체용제가 기화할 때 이에 포함되어 있는 용질은 더 농축된다. 마찬가지로 스칼라 농도변수로 모델링 된 용질도 유체문제의 자유표면에서 증발로 인해 자동적으로 농축될 것이다. 표면요소에 액체가 반보다 적게 있을 경우 농축변화가 표면요소의 두께의 반에 해당하는 지역으로 퍼져나가는 크기로 스칼라의 농축이 바로 주위의 표면요소에서도 또한 발생할 것이다.

 증발이 충분히 발생하고 용질의 농도가 커지면 표면에서 발생할 수도 있고 용질이 완전히 증발하면 표면상에 이의 잔류가 생성될 수 있다. 잔류형성은 Physics Bubbles and phase change 에서 활성화되는 Constant pressure bubbles with vaporization, 및 Thermal bubbles with phase change 모델과 함께 시뮬레이션 되어야 한다. 잔류모델은 IRESID = 1로 지정하고 용질 스칼라 ns, RMXSC(ns)를 최대 packing 밀도를 정의함으로써 활성화된다. 일단 용질이 최대 packing 밀도까지 농축되면 더 이상의 농축은 고정(움직이지 않는)된 잔류를 초래한다. 하나 이상의 스칼라 용질이 존재하면 잔류는 모든 용질 전체 잔류를 기록한다.

Note: 용질농도는 Physics Scalars 로부터 FLOW-3D‘s Scalars 모델을 이용하여 입력된다.