Rivulet Formation in Slide Coating

Simulation of Transient and Three-Dimensional Coating Flows Using a Volume-of-Fluid Technique

Volume-of-Fluid 기법을 사용한 과도 및 3 차원 코팅 흐름 시뮬레이션

슬라이드 코팅 흐름은 정밀 필름 코팅 제품의 제조에 널리 사용됩니다. 코팅 속도를 높이고 코팅 필름의 성능을 향상시키기 위해 슬라이드 코팅 공정을 더 잘 이해하기 위해 상당한 노력을 기울이고 있습니다. 예를 들어 Chen1과 같이 잘 정의 된 한계 이상으로 코팅 속도를 높이면 코팅 비드가 완전히 파손될 수 있음이 입증되었습니다.

이 논문에서는 유체 표면의 임의, 3 차원 및 시간에 따른 변형을 설명 할 수있는 계산 방법에서 얻은 슬라이드 코팅 흐름의 시뮬레이션 결과를 제시합니다. 상용 프로그램에서 사용할 수있는이 방법은 VOF (Volume-of-Fluid) 기술 3,4로 유체를 추적하는 고정 그리드를 사용합니다. 표면 장력, 벽 접착력, 유체 운동량 및 점성 응력은 분석에서 완전히 설명됩니다.

기본 방법은 딥 코팅 데이터와의 비교를 통해 설명됩니다 5. 그런 다음 접촉 선과 동적 접촉각이 우리의 방법에서 암시 적으로 처리되는 방법에 대한 논의를 제시합니다. VOF 기술을 사용하기 때문에 유체를 포함하는 각 제어 볼륨에 작용하는 힘의 합계 만 필요합니다. 그러면 접촉 선의 위치와 동적 접촉각이 계산 된 힘 균형에서 자동으로 발생합니다. 우리의 기술은 코팅 흐름에서 시작 및 비드 분해 현상의 예와 함께 설명됩니다.

그림에서 볼 수 있듯이 신속한 공정의 경우 당사의 접근 방식은 기존 분석 방법으로는 달성하기 어려운 코팅 공정 설계 및 최적화 시뮬레이션을위한 효율성과 견고성을 제공합니다.

Introduction

모든 코팅 공정에는 일정한 조건을 달성하기 전에 코팅 재료가 큰 변형을 겪는 일종의 시작 기간이 포함됩니다. 시작 프로세스의 우수한 특성화는 낭비를 줄이고 프로세스가 원하는 한계 내에서 작동하는지 확인하는 데 종종 중요합니다.

다양한 섭동에 대한 코팅 흐름의 과도 ​​응답에 대한 유사한 이해가 또한 바람직하여 코팅 비드의 파손 및 코팅의 불균일성을 피할 수 있습니다. 코팅 흐름의 역학은 일반적으로 비선형이고 다양한 경쟁 물리적 프로세스의 결합 된 상호 작용을 포함하기 때문에 이론적 조사를 수행하기 위해 특수한 계산 도구에 의존해야합니다.

이 작업을 위해 선택한 모델링 도구의 장점은 고정 그리드를 통해 임의의 유체 변형을 추적 할 수있는 강력한 수치 기법 인 VOF (Volume-of-Fluid) 방법을 사용한다는 것입니다. 코팅 흐름 분석에 중요한 프로그램의 다른 기능과 함께 이것이 수행되는 방식은 다음 섹션에서 설명합니다.

Overview of Numerical Method

여기에 사용 된 수치 프로그램 FLOW-3D®는 1960 년대 중반 Los Alamos National Laboratory에서 개발 된 Marker-and-Cell (MAC) 방법 6에서 유래되었습니다. 원래 MAC 방법에 대한 많은 개선이 수년에 걸쳐 이루어졌습니다.

본 출원에서 가장 흥미로운 것은 유체 영역을 찾기 위해 연속적인 유체 부피 함수에 의해 개별 마커 입자를 대체하는 것입니다. VOF 방법에서는 관심있는 계산 영역을 포함하는 사각형 제어 볼륨의 고정 그리드가 구성됩니다. 각 제어 볼륨에 대해 숫자 F는 액체가 차지하는 볼륨의 비율을 표시하기 위해 유지됩니다.

F 함수를 사용하는 것 외에도 VOF 방법은 날카로운 액체-가스 인터페이스를 유지하는 방식으로 직사각형 셀의 고정 그리드를 통해 F 함수를 전진시키기 위해 특수 수치 기법을 사용합니다. 마지막으로 VOF 방법은 경계면에서 적절한 법선 및 접선 응력 조건을 충족하기 위해 신중하게 구현 된 자유 표면 경계 조건 세트를 사용합니다. 접근 방식의 또 다른 특징은 복잡한 기하학적 영역을 정의하는 방식입니다.

장애물은 제어 볼륨의 일부를 차단할 수 있도록하여 고정 그리드에 포함됩니다. 각 제어 볼륨에서 흐름을 위해 열린 분수 영역 및 볼륨은 지오메트리 표현으로 저장됩니다. FAVOR 방법 7이라고하는이 방법은 형상을 질량, 운동량 및 에너지에 대한 이산화 된 방정식에 자동으로 통합합니다. VOF 및 FAVOR 방법을 사용하면 코팅 문제에 대한 지오메트리 및 초기 유체 구성을 정의하는 데 필요한 복잡한 그리드 생성 프로세스가 없기 때문에 시간과 노력이 절약됩니다.

다음 섹션에서는 플랫 시트에 코팅을 담그는 응용 프로그램과 함께 기본적인 수치 방법의 유용성을 설명합니다.

Dip Coating – A Validation Test

Lee와 Tallmadge는 액체 수조에서 수직으로 인출 된 평판에 딥 코팅하는 과정에 대해 광범위한 조사를 수행했습니다.

이 프로세스는 다양한 상업용 응용 프로그램에서 널리 사용됩니다. 그들의 연구는 2 차원 흐름 (즉, 가장자리 효과 없음)에 초점을 맞추고 실험 데이터에 맞는 경험적 매개 변수를 포함하는 분석 표면 프로파일로 구성되었습니다. 0.085에서 23.9 사이의 모세관 수에 대한 실험 데이터가 수집되었으며, 레이놀즈 수는 0.044에서 12.7 사이입니다. 필름 두께에 대한 실험 데이터는 약 10 % 이하로 추정되는 오류를 가졌습니다.

이 실험에 대한 계산 모델은 코팅 할 시트의 수직 (접선) 속도와 동일한 수직 (접선) 속도가 주어진 직사각형 욕조로 구성되어 매우 간단합니다. 처음에 코팅액은 수평면을 가지며 시트는 충동 적으로 시작됩니다 (그림 1c 참조). 다양한 모세관 수 사례가 시뮬레이션되었으며 모든 경우에 예측 된 필름 두께는 실험 오차 범위 내에있었습니다. 예를 들어 모세관 번호 1.17에 해당하는 경우를 고려하십시오. 시트를 3.31cm / s에서 수조 (밀도 0.885gm / cc, 표면 장력 32.7dynes / cm 및 점도 1159.4cp를 갖는 점성 윤활유)에서 꺼냈다. 우리는 2.5cm의 욕조 너비와 2.0cm의 깊이 (35 x 25 그리드 셀)를 사용했습니다.

필름 흐름을 캡처하기 위해 욕조 위의 2.0cm 영역이 모델에 포함되었습니다 (수직으로 추가 25 개 셀 필요). 수조의 오른쪽은 유체 높이가 일정하게 유지되고 압력이 수압이고 흐름이 계산 영역으로 들어갈 수있는 열린 경계 였지만 휴식에서 시작해야했습니다. 이른바 “정체”경계 조건은 움직이는 시트의 오른쪽으로 충분히 멀리 떨어져있는 경우 수평 무한 욕조에 대한 좋은 근사치입니다. 모델링이 필요한 수조의 폭을 설정하기 위해 여러 가지 계산이 수행되었으며, 필름 두께가이 폭에 크게 민감하지 않다는 것이 밝혀졌으며 그 결과는 실험에서도 발견되었습니다.

그림 1a는 초기 조건, 그림 1b는 계산 된 과도 상태의 스냅 샷, 그림 1c는 최종 정상 상태 결과를 보여줍니다. 처음에 시트에 의해 그려지는 액체 팁의 모양은 정적 접촉각 (즉, 시트와 액체 사이의 접착력)에 따라 달라지며 임의로 10 도로 취해졌습니다. 액체가 끌어 올려짐에 따라, 배출되는 액체 필름을 대체하기 위해 시트쪽으로 흐름이 시작되어야한다는 신호로서 함몰 파가 나머지 수조에 대한 신호로 오른쪽으로 이동합니다. 약 5.0 초만에 정상 상태에 도달합니다. 필름 두께는 0.145cm로 계산되었으며, 이는 0.142cm의 측정 값과 매우 일치합니다.

Rivulet Formation in Slide Coating
Rivulet Formation in Slide Coating

자세한 내용은 본문을 참고하시기 바랍니다.

FLOW-3D의 활용 및 설계 적용 사례 (4)

코팅 분야의 활용

코팅(coating)이란 기판 위의 공기를 액상의 코팅액으로 대체하는 것을 말하고, 코팅 공정은 고분자 용액, 현탁액, 등의 코팅액이 기판 위에 도포됨으로써 마이크로 단위 이하의 액막을 만드는 공정이라고 할 수 있다. 

slot 코팅
<슬롯(Slot)코팅의 유동 전개>

코팅 공정의 산업적 응용 범위는 매우 넓다. 예를 들면, LCD/PDP 등과 같은 디스플레이, 자성 또는 광학 디스크, 노광, 고집적회로 기판, 광섬유 등의 일반 산업용 및 가정용에 이르기까지 코팅 공정은 모든 산업의 핵심이 되는 분야라고 할 수 있다.
최근 그 중요성으로 인해 코팅 분야에 대한 연구가 활발히 진행되고 있는데, 생산 속도를 빠르게 하면서 얇고 정밀한 코팅 제품을 생산하기 위한 최적화, 안정성 연구, 다층 필름 및 동시 양면 코팅 제품 등과 같이 코팅의 기능성을 부여하는 신기술 개발, 환경 문제를 해결하기 위한 비 뉴턴(Non-Newtonian) 특성의 코팅액 개발, 최적의 공정 조건을 도출하고자 하는 이론적, 실험적 연구 등이 그것이다. 
코팅 공정을 안정되게 유지하기 위해서는 코팅 비드(bead) 내에 작용하는 관성력, 점성력, 모세관력 그리고 외력의 상관관계를 고찰할 필요가 있다. 이를 위해서는 코팅액의 물성, 다이의 구조, 운전 조건 등의 공정 조건을 체계적으로 분석하여야 한다. 코팅액의 유변학적 물성 중에는 점도, 표면장력, 밀도 등이 동특성에 큰 영향을 준다. 
또한 코팅액이 웹(web)에 닿을 때의 접촉각, 웹 특성도 공정 해석에 주요 인자이다. 장비의 설계에 있어서는 다이의 기하구조와 더불어 다이 립(lip)의 배치도 중요하다. 이들은 코팅액의 유동과 압력 분포에 크게 영향을 미치기 때문에 여러 형태의 다이 구조가 제안되고 있다. 운전변수는 생산성을 결정짓는 웹 속도를 비롯하여 필름 두께, 공급 유량, 코팅 갭 등이 있다. 이외에도 외력으로 작용하는 전자기력 또는 상류흐름(upstream) 영역 밖에서 가해주는 압력 강하도 고려되어야 한다. 다양한 공정 변수들의 효과는 여러 무차원수로 표현하여 설명하는 것이 적절하다. 가장 중요한 무차원 변수는 카필러리 수(Capillary number)라고 할 수 있는데 용액의 점도와 웹 속도에 대한 표면장력의 비로 정의된다.

참고로 유체역학에서 모세관수는 서로 섞이지 않는 두 유체의 점도와 표면 장력의 상대적 영향력을 나타내는 무차원 수이다. 
한편, 코팅 방식의 종류는 코팅 대상물의 구조 및 종류, 코팅액, 코팅 두께 등에 따라 다음과 같이 분류된다.

■ 슬라이드(Slide) 코팅
■ 딥(Dip) 코팅
■ 스핀(Spin) 코팅
■ 커튼(Curtain) 코팅
■ 슬롯(Slot) 코팅
■ 롤(Roll) 코팅
■ 그라비어(Gravure) 코팅

이번 호에서는 FLOW-3D를 이용하여 다양한 코팅방식에 대한 간단한 예제 및 코팅 공정에서 발생하는 불량의 해석 사례를 제시하고자 하며, 또한 최근에 가공 시간 및 공정 단축을 위해 자주 시도되고 있는 다층 동시 코팅에 대해서도 간략하게 언급하고자 한다.

다운로드 : [ 4회_201804_analysis_flow3d ]

작성자 | 홍규선_에스티아이C&D 솔루션 사업부 이사
이메일 | flow3d@stikorea.co.kr
홈페이지 | www.flow3d.co.kr

출처 : CAD&Graphics 2018년 04월호

제품 소개 요청

FLOW-3D 소개 요청

회사/기관명* :
제목* :
성명* :
이메일 주소* :
연락 전화번호* :
내용 :

산업 분야별 해석 사례

FLOW-3D 를 이용한 각각의 산업분야 적용 가능성을 살펴보십시오.
경험이 풍부한 당사 FLOW-3D  Engineer가 귀하의 궁금하신 사항에 대해 언제든지 답변해 드립니다.

주조분야
  • Gravity Pour 중력 주조
  • High Pressure Die Casting 고압 다이캐스팅
  • Tilt Casting 경동 주조
  • Centrifugal Casting 원심 주조
  • Investment Casting 정밀 주조
  • Vacuum Casting 진공 주조
  • Continuous Casting 연속 주조
  • Lost Foam Casting 소실 모형 주조
  • Fill and Defects Tracking 용탕 주입 및 결함 추적
  • Solidification and Shrinkage 응고 및 수축 해석
  • Thermal Stress Evolution and Deformation 열응력 및 변형 해석
물 및 환경 응용 분야
  • Wastewater Treatment and Recovery 폐수 처리 및 복구
  • Pump Stations 펌프장
  • Dams, Weirs, Spillways 댐, 위어, 여수로
  • River Hydraulics 강 유역
  • Inundation & Flooding 침수 및 범람
  • Open Channel Flow 개수로 흐름
  • Sediment and Scour 퇴적 및 세굴(쇄굴)
  • Plumes, Hydraulic Zones of Influence 기둥, 수리 영향 구역
  • Coastal and Critical Infrastructure Wave Run-Up 연안 및 핵심 인프라 웨이브 런업

에너지 분야
  • Fuel/cargo sloshing in oceangoing containers 해양 컨테이너 용 연료 /화물 슬로싱
  • Offshore platform wave effects 근해 플랫폼 파 영향
  • Separation devices undergoing 6 DOF motion 6 자유도 운동을하는 분리 장치
  • Wave energy converters 파동 에너지 변환기
미세유체
  • Continuous-Flow 연속 흐름
  • Droplet, Digital 물방울, 디지털
  • Molecular Biology 분자 생물학
  • Opto-Microfluidics 광 마이크로 유체
  • Cell Behavior 세포 행동
  • Fuel Cells 연료 전지들
용접 제조
  • Laser Welding 레이저 용접
  • Laser Metal Deposition 레이저 금속 증착
  • Additive Manufacturing 첨가제 제조
  • Multi-Layer Build 다중 레이어 빌드
  • Polymer 3D Printing 폴리머 3D 프린팅
코팅 분야
  • Curtain Coating 커튼 코팅
  • Dip Coating 딥 코팅
  • Gravure Printing 그라비아 코팅
  • Roll Coating 롤 코팅
  • Slide Coating 슬라이드 코팅
  • Slot Coating 슬롯 코팅
  • Contact Insights 접촉면 분석
연안 / 해양분야
  • Breakwater Structures 방파제 구조물
  • Offshore Structures 항만 연안 구조물
  • Ship Hydrodynamics 선박 유체 역학
  • Sloshing & Slamming 슬로싱 & 슬래 밍
  • Tsunamis 쓰나미 해석
생명공학 분야
  • Active Mixing 액티브 믹싱
  • Chemical Reactions 화학 반응
  • Dissolution 용해
  • Drug Delivery 약물 전달
  • Drug Particles 마약 입자
  • Microdispensers 마이크로 디스펜서
  • Passive Mixing 패시브 믹싱
  • Piezo Driven Pumps 피에조 구동 펌프
자동차 분야
  • Fuel Tanks 연료 탱크
  • Early Fuel Shut-Off 초기 연료 차단
  • Gear Interaction 기어 상호 작용
  • Filters 필터
  • Degas Bottles 병의 가스제거
우주 항공 분야
  • Sloshing Dynamics 슬로싱 동역학
  • Electric Charge Distribution 전기 충전 배분
  • PMDs PMD