CFD Simulations of Conical Central Baffle Flumes | Journal of Irrigation and Drainage Engineering | Vol 148, No 2

원추형 중앙 배플 수로의 CFD 시뮬레이션

CFD Simulations of Conical Central Baffle Flumes

Abstract

Ankur KapoorAniruddha D. Ghare; and Avinash M. Badar

원추형 중앙 배플 수로는 개방 채널에서 임시 유량 측정을 위한 효과적인 솔루션을 제공합니다. 

원추형 중앙 배플 수로는 원뿔 모양의 장애물 또는 열린 수로의 중심에서 수직으로 향하는 중앙 배플로 구성됩니다. 본 연구에서, 원추형 중앙 배플 수로를 사용하여 개방 채널에서 유량 측정을 위해 이전에 개발된 배출 예측 모델은 더 넓은 적용 범위를 커버하기 위해 직사각형 및 사다리꼴 채널에서 사용하기 위해 실험적으로 재 보정되었습니다. 

제안된 보정 방정식은 FLOW-3D를 사용한 전산유체역학(CFD) 시뮬레이션 결과를 사용하여 확장된 범위의 흐름 및 기하학적 매개변수에 대해 검증되었습니다. 

시뮬레이션 연구는 두 단계로 수행됩니다. 첫 번째 단계는 시뮬레이션의 수면 프로파일과 동일한 배출 및 흐름 조건에 대한 실험 흐름을 비교하여 설정한 정의된 시뮬레이션 문제의 검증입니다. 

두 번째 단계는 무차원 방전 및 측면 경사(중1= 0중1=0, 0.50, 1.00 및 1.50). 80% 미만의 수중에서 방전 예측의 오류는 평균값이 거의 3%로 항상 10% 미만인 것으로 나타났습니다. 

CFD 분석 결과에 따르면 보정된 배출 예측 모델의 사용은 수중 한계 80%까지 권장되었으며, 그 이상에서는 오차가 10% 이상인 것으로 나타났습니다.

Conical central baffle flumes present an effective solution for temporary flow measurements in open channels. A conical central baffle flume consists of a cone-shaped obstruction, or a central baffle, oriented vertically at the center of an open channel. In the present study, a previously developed discharge prediction model for flow measurements in open channels using the conical central baffle flumes has been experimentally recalibrated for use in rectangular and trapezoidal channels to cover a wider application range. The proposed calibration equation has been validated for an extended range of flow and geometrical parameters using the results of computational fluid dynamics (CFD) simulations using Flow-3D. The simulation studies are carried out in two steps. The first step is the validation of the defined simulation problem set up by comparing the water surface profiles of the simulation and experiment flows for the same discharge and flow conditions. The second step is the validation of the proposed discharge prediction model for the extended range (0–0.50) of the dimensionless discharge and side slopes (m1=0m1=0, 0.50, 1.00, and 1.50). It is found that for submergence less than 80%, the error in discharge prediction is always less than 10% with a mean value of nearly 3%. Based on the results of the CFD analysis, the use of the calibrated discharge prediction model has been recommended up to a submergence limit of 80%, beyond which the errors are found to be greater than 10%.

ASCE Library CFD Simulations of Conical Central Baffle Flumes | Journal of Irrigation and Drainage Engineering | Vol 148, No 2
ASCE Library CFD Simulations of Conical Central Baffle Flumes | Journal of Irrigation and Drainage Engineering | Vol 148, No 2
CFD Simulations of Conical Central Baffle Flumes | Journal of Irrigation and Drainage Engineering | Vol 148, No 2
CFD Simulations of Conical Central Baffle Flumes | Journal of Irrigation and Drainage Engineering | Vol 148, No 2
CFD Simulations of Conical Central Baffle Flumes | Journal of Irrigation and Drainage Engineering | Vol 148, No 2
CFD Simulations of Conical Central Baffle Flumes | Journal of Irrigation and Drainage Engineering | Vol 148, No 2
Channel Flow Measurement Using Portable Conical Central Baffle | Journal of Irrigation and Drainage Engineering | Vol 145, No 11
Channel Flow Measurement Using Portable Conical Central Baffle | Journal of Irrigation and Drainage Engineering | Vol 145, No 11
Abb. 3 Detail des Rechens am Vorversuch zum Seilrechen – Blick in Fließrichtung

Implementation of an angled trash rack in the 3D-numerical simulation with FLOW-3D

Abstract

Sebastian Krzyzagorski · Roman Gabl · Jakob Seibl · Heidi Böttcher · Markus Aufleger
Online publiziert: 17. Februar 2016
© Die Autor(en) 2016. Dieser Artikel ist auf Springerlink.com mit Open Access verfügbar.

지난 몇 년 동안 과학자와 엔지니어는 기초 연구와 유압 구조 계획에 3D 수리적 흐름 시뮬레이션을 점점 더 많이 사용해 왔다. 그러나 수력발전소 취수장 앞의 쓰레기통은 수치 시뮬레이션에 있어 특별한 문제를 나타낸다. 그 이유는 다른 건축 요소들에 비해 trash rack bars들의 기하학적 구조가 특히 단편화되었기 때문이다. 폐기물 랙 손실을 FLOW-3D로 3D 수리적 시뮬레이션에 포함시키기 위한 대안적 접근법으로 배플을 사용할 수 있다. 월디 외 연구진(Exsterreichische Wasser- und Abfallwichtschaft 67:1–2, 2015)은 그러한 배플이 쓰레기 수거함의 손실을 모형화하는 유망한 방법임을 입증했다. 서로 다른 개념의 이러한 비교는 계산면을 따라 그리드 방향을 갖는 수직 쓰레기장으로 제한되었다. 실제 논문은 각이 진 쓰레기 보관대의 배플을 이용하여 쓰레기 보관대 손실을 모델링하는 것에 초점을 맞추고 있으며, 따라서 월디 외 연구소의 조사를 업그레이드한다

Over the last years, scientists and engineers have used more and more 3D-numerical flow simulations for basic research and the planning of hydraulic constructions. However, trash racks in front of the intakes of hydroelectric power plants represent a particular problem for numerical simulations. The reason for this is the especially fragmented geometry of the trash rack bars in comparison to other construction elements. As an alternative approach to include trash rack losses into a 3D-numerical simulation with FLOW-3D a baffle can be used. Waldy et al. (Österreichische Wasser- und Abfallwirtschaft 67:1–2, 2015) demonstrated that such a baffle is a promising method to model the losses at trash racks. These comparisons of different concepts were limited to a vertical trash rack, which had its grid orientation along the computational plane. The actual paper focuses on the modelling of the trash rack losses by means of a baffle at an angled trash rack and thus upgrades the survey of Waldy et al. (Österreichische Wasser- und Abfallwirtschaft 67:1–2, 2015).

Vertikal geneigte Rechenstäbe mit Winkel a nach Definition von  Meusburger (2002) und b Seilrechen mit  Winkel d
Vertikal geneigte Rechenstäbe mit Winkel a nach Definition von Meusburger (2002) und b Seilrechen mit Winkel d
Abb. 2 Modellgeometrie, Grundriss (GR) und Schnitte für den geraden Rechen und exemplarisch der GR für den 30° geneigten  Rechen – Einheiten in [m]
Abb. 2 Modellgeometrie, Grundriss (GR) und Schnitte für den geraden Rechen und exemplarisch der GR für den 30° geneigten Rechen – Einheiten in [m]
Abb. 3 Detail des Rechens am Vorversuch zum Seilrechen – Blick in Fließrichtung
Abb. 3 Detail des Rechens am Vorversuch zum Seilrechen – Blick in Fließrichtung
3D-Ansicht der Nullvariante, geneigter Rechen, d=30°, Netz N4
3D-Ansicht der Nullvariante, geneigter Rechen, d=30°, Netz N4
 Zellenweise Auswertung der Wasserspiegelhöhen ohne Interpolation mit  MATLAB für die Nullvariante, geneigter Rechen, d=30°, Netz N4
Zellenweise Auswertung der Wasserspiegelhöhen ohne Interpolation mit MATLAB für die Nullvariante, geneigter Rechen, d=30°, Netz N4
Auswertung Einfluss der Rechenneigung für Netz N4
Auswertung Einfluss der Rechenneigung für Netz N4
Grundriss mit tiefengemittelten Geschwindigkeiten und Geschwindigkeitsvektoren, geneigter Rechen, d=30°, Netz N
Grundriss mit tiefengemittelten Geschwindigkeiten und Geschwindigkeitsvektoren, geneigter Rechen, d=30°, Netz N
FLOW-3D (x) Workflow

Characterizing Contact Tank Performance

접촉 탱크 성능 특성화

성과 목표

다양한 박테리아 부하가있는 활성 슬러지 공정에서 염소 소독 접촉 탱크의 성능을 특성화합니다. 모델은 Evans와 Kothandramm (2000) 1 의 논문을 기반으로 설정되었습니다 .

염소 접촉 탱크 회로도

엔지니어링 과제

사용자가 다양한 박테리아 부하 및 염소 주입 농도로 시뮬레이션의 여러 반복을 실행할 수 있는 워크 플로우를 자동화합니다. 이는 시스템 배출구에서 박테리아 농도를 최소화하는 데 필요한 최소 염소량을 찾기 위해 설정됩니다.

접촉 탱크 성능 특성화

FLOW-3D (x) 워크 플로우

초기 시뮬레이션은 주어진 유속에서 시스템의 유체 역학만을 계산합니다. 3000 초에서 정상 상태 조건이 발견됩니다. 이 시뮬레이션의 유동장을 사용하여 반응 역학 모델을 도입하기 위해 재시작 시뮬레이션이 생성됩니다. 유입 파이프를 통해 염소와 박테리아가 유입됩니다. 배출구에는 반응물 (염소 및 박테리아)의 농도를 측정하기 위해 플럭스 표면이 배치됩니다.

FLOW-3D (x) 는 노드를 사용하여 최적화를위한 자동화된 워크플로를 구성합니다. 유입 박테리아 농도 변수는 1.0e9 ~ 10.0e9 범위로 지정되고 염소 농도 변수는 1.0e-6 ~ 9.0e-5 범위로 지정됩니다. FLOW-3D 노드를 사용하여 시뮬레이션이 실행됩니다. 후 처리 노드는 결과에서 염소와 박테리아의 농도를 추출하고 출구에서 박테리아를 최소화하는데 필요한 최소 염소를 나타내는 Pareto fronts를 만듭니다.

예산 또는 허용되는 시뮬레이션 수는 20 개로 설정한 다음 50 개로 설정하여 예산 증가가 Pareto fronts의 품질에 미치는 영향을 보여주었습니다. 단일 시뮬레이션의 런타임은 약 15 분입니다.

Performance Results

시뮬레이션 20회

FLOW-3D (x) 20 시뮬레이션 예산 접촉 탱크

시뮬레이션 50 회

FLOW-3D(x)의 데이터 분석 도구를 사용하여 염소 농도에 대한 박테리아 농도의 Pareto fronts을 20회 사례와 50회 사례 모두에 대해 컴파일합니다. 예산이 클수록 최적화 엔진은 보다 정확한 Pareto를 위해 보고할 시간과 데이터를 더 많이 확보할 수 있습니다.

시스템 설계자는 FLOW-3D(x)에 의해 생성된 Pareto fronts을 통해 접촉 탱크에 주입해야 하는 염소의 양을 신속하게 평가하여 주어진 유속 하에서 탱크 출구의 박테리아를 최소화할 수 있습니다. 다른 유량의 경우, 탱크 유체역학을 정의하는 원래 시뮬레이션은 새로운 유량으로 실행되고 동일한 FLOW-3D(x) 프로젝트가 실행되며, 흡입 박테리아와 염소 변수의 범위가 다를 수 있습니다.

References

Evans, R. and Kothandraman, V., “Design and Performance of Chlorine Contact Tanks, “Circular 119 STATE OF ILLINOIS DEPARTMENT OF REGISTRATION AND EDUCATION 2000.

FLOW-3D (x) Workflow

Optimizing Design Performance with Baffle Placement

배플 배치로 설계 성능 최적화

최적화 목표

배플이 있는 액체 저장 탱크의 슬로시 댐핑

최적화 과제

사용자가 슬로싱 시뮬레이션을 여러번 반복하여 대형 원통형 탱크에서 댐핑을 최대화하는 최적의 링 배플 위치를 찾을 수 있는 워크플로를 생성합니다. 여기에서 시뮬레이션된 사례는 Maleki 및 Ziyaeifar (2008)1 의 물리적 실험을 기반으로합니다 .

액체 저장 탱크 개략도

최적화 솔루션

시뮬레이션은 수직으로 배치된 원통형 탱크에서 0.6m의 유체 높이에서 처음에 수평에서 5도 배치된 유체의 슬로싱의 자유 붕괴를 나타냅니다. 링 배플의 위치는 z 방향으로 변환할 수 있습니다. 목표는 가장 많은 양의 슬로시 댐핑을 발생시키는 배플의 위치를 ​​찾는 것입니다. 각 시뮬레이션은 12 개의 CPU 코어에서 약 10 분 동안 실행됩니다.

예산 범위에서 30 회 반복 또는 허용되는 시뮬레이션 반복 횟수가 지정됩니다. FLOW-3D (x) 는 30 개의 시뮬레이션을 실행하여 시스템의 동작을 나타내는 반응 표면을 생성합니다. 이를 통해 최상의 솔루션을 찾을 수 있습니다.  

FLOW-3D (x) 워크 플로우

FLOW-3D (x) 는 노드를 사용하여 최적화를 위한 자동화된 워크 플로를 구성합니다. 이 워크 플로우를 시작할 때 z 방향의 초기 배플 위치가 제공됩니다. 배플 위치는 규정된 경계 사이에서 수직으로 이동하도록 허용됩니다. 그런 다음 각 시뮬레이션은 반복 시뮬레이션을 실행하는 FLOW-3D 노드로 공급됩니다. 시뮬레이션 결과는 감쇠 계산을 수행하는 계산기 노드에 연결됩니다. 그런 다음 최적화 엔진은 지속적으로 개선되는 응답 표면을 기반으로 배플의 또 다른 z 좌표를 선택하고 다른 시뮬레이션 실행을 계속합니다.  

FLOW-3D (x) 최적화 워크 플로우 배플 성능 설계

결과

FLOW-3D(x)의 내장 데이터 분석 도구를 사용하여 결과를 그래픽으로 표시하면 0.55m의 배플 높이가 최대 댐핑 비율을 제공한다는 것을 알 수 있습니다. 시뮬레이션 및 반복 설계 기능은 모두 프로그램과 함께 자동화됩니다. 또한 각 시뮬레이션의 영상과 비디오를 출력으로 설정할 수 있습니다.

성능 설계 최적화-슬로 싱

References

1Maleki, A. and Ziyaeifar, M., 2008. Sloshing damping in cylindrical liquid storage tanks with baffles. Journal of Sound and Vibration, 311(1-2), pp.372-385.

Mixing Tank with FLOW-3D

CFD Stirs Up Mixing 일반

CFD (전산 유체 역학) 전문가가 필요하고 때로는 실행하는데 몇 주가 걸리는 믹싱 시뮬레이션의 시대는 오래 전입니다. 컴퓨팅 및 관련 기술의 엄청난 도약에 힘 입어 Ansys, Comsol 및 Flow Science와 같은 회사는 엔지니어의 데스크톱에 사용하기 쉬운 믹싱 시뮬레이션을 제공하고 있습니다.

“병렬화 및 고성능 컴퓨팅의 발전과 템플릿화는 비전문 화학 엔지니어에게 정확한 CFD 시뮬레이션을 제공했습니다.”라고 펜실베이니아  피츠버그에있는 Ansys Inc.의 수석 제품 마케팅 관리자인 Bill Kulp는 말합니다 .

흐름 개선을위한 실용적인 지침이 필요하십니까? 다운로드 화학 처리의 eHandbook을 지금 흐름 도전 싸우는 방법!

예를 들어, 회사는 휴스턴에있는 Nalco Champion과 함께 프로젝트를 시작했습니다. 이 프로젝트는 시뮬레이션 전문가가 아닌 화학 엔지니어에게 Ansys Fluent 및 ACT (분석 제어 기술) 템플릿 기반 시뮬레이션 앱에 대한 액세스 권한을 부여합니다. 새로운 화학 물질을위한 프로세스를 빠르고 효율적으로 확장합니다.

Giving Mixing Its Due

“화학 산업은 CFD와 같은 계산 도구를 사용하여 많은 것을 얻을 수 있지만 혼합 프로세스는 단순하다고 가정하기 때문에 간과되는 경우가 있습니다. 그러나 최신 수치 기법을 사용하여 우수한 성능을 달성하는 흥미로운 방법이 많이 있습니다.”라고 Flow Science Inc. , Santa Fe, NM의 CFD 엔지니어인 Ioannis Karampelas는 말합니다 .

이러한 많은 기술이 회사의 Flow-3D Multiphysics 모델링 소프트웨어 패키지와 전용 포스트 프로세서 시각화 도구 인 FlowSight에 포함되어 있습니다.

“모든 상업용 CFD 패키지는 어떤 형태의 시각화 도구와 번들로 제공되지만 FlowSight는 매우 강력하고 사용하기 쉽고 이해하기 쉽게 설계되었습니다. 예를 들어, 프로세스를 재 설계하려는 엔지니어는 다양한 설계 변경의 효과를 평가하기 위해 매우 직관적인 시각화 도구가 필요합니다.”라고 그는 설명합니다.

이 접근 방식은 실험 측정을 얻기 어려운 공정 (예 : 쉽게 측정 할 수없는 매개 변수 및 독성 물질의 존재로 인해 본질적으로 위험한 공정)을 더 잘 이해하고 최적화하는데 특히 효과적입니다.

동일한 접근 방식은 또한 믹서 관련 장비 공급 업체가 고객 요구에 맞게 제품을보다 정확하게 개발하고 맞춤화하는 데 도움이되었습니다. “이는 불필요한 프로토 타이핑 비용이나 잠재적 인 과도한 엔지니어링을 방지합니다. 두 가지 모두 일부 공급 업체의 문제였습니다.”라고 Karampelas는 말합니다.

CFD 기술 자체는 계속해서 발전하고 있습니다. 예를 들어, 수치 알고리즘의 관점에서 볼 때 구형 입자의 상호 작용이 열 전달을 적절하게 모델링하는 데 중요한 다양한 문제에 대해 이산 요소 모델링을 쉽게 적용 할 수있는 반면, LES 난류 모델은 난류 흐름 패턴을 정확하게 시뮬레이션하는 데 이상적입니다.

컴퓨팅 리소스에 대한 비용과 수요에도 불구하고 Karampelas는 난류 모델의 전체 제품군을 제공 할 수있는 것이 중요하다고 생각합니다. 특히 LES는 이미 대부분의 학계와 일부 산업 (예 : 전력 공학)에서 선택하는 방법이기 때문입니다. .

그럼에도 불구하고 CFD의 사용이 제한적이거나 비실용적 일 수있는 경우는 확실히 있습니다. 여기에는 나노 입자에서 벌크 유체 증발을 모델링하는 것과 같이 관심의 규모가 다른 규모에 따라 달라질 수있는 문제와 중요한 물리적 현상이 아직 알려지지 않았거나 제대로 이해되지 않았거나 아마도 매우 복잡한 문제 (예 : 모델링)가 포함됩니다. 음 펨바 효과”라고 Karampelas는 경고합니다.

반면에 더욱 강력한 하드웨어와 업데이트 된 수치 알고리즘의 출현은 CFD 소프트웨어를 사용하여 과다한 설계 및 최적화 문제를 해결하기위한 최적의 접근 방식이 될 것이라고 그는 믿습니다.

“복잡한 열교환 시스템 및 새로운 혼합 기술과 같이 점점 더 복잡한 공정을 모델링 할 수있는 능력은 가까운 장래에 가능할 수있는 일을 간단히 보여줍니다. 수치적 방법 사용의 주요 이점은 설계자가 상상력에 의해서만 제한되어 소규모 믹서에서 대규모 반응기 및 증류 컬럼에 이르기까지 다양한 화학 플랜트 공정을 최적화 할 수있는 길을 열어 준다는 것입니다. 실험적 또는 경험적 접근 방식은 항상 관련성이 있지만 CFD가 미래의 엔지니어를위한 선택 도구가 될 것이라고 확신합니다.”라고 그는 결론을 내립니다.



Seán Ottewell은 Chemical Processing의 편집장입니다. sottewell@putman.net으로 이메일을 보낼 수 있습니다 .

기사 원문 : https://www.chemicalprocessing.com/articles/2017/cfd-stirs-up-mixing/

FLOW-3D 용어 사전 테이블

FLOW-3D Glossary | FLOW-3D 용어 사전

FLOW-3D 용어 사전 / 용어 설명

FLOW-3D 용어 사전 테이블
FLOW-3D 용어 사전 테이블

FLOW-3D 용어 사전 / 용어 설명

Drift Flux

드리프트 모델은 밀도가 서로 다른 두 혼합 유체 구성 요소의 상대적 흐름을 설명합니다. 구성 요소는 상이 다를 수도 있고, 상이 같지만(불가침) 유체가 다를 수도 있습니다. 분산된 위상 입자 크기가 클 경우 드리프트 모델의 적용성에 대한 제한이 존재할 수 있습니다. 이러한 제한은 일반적으로 메쉬 셀 크기의 10% 미만으로 분산된 위상 입자 크기를 유지함으로써 방지할 수 있습니다.

배플

얇은 형상 조각을 나타내는데 사용되는 2 차원 개체입니다. 이들은 전처리기에 의해 셀면으로 이동되고 유체의 흐름을 부분적으로 또는 완전히 차단하는 역할을 합니다. 배플은 지정된 열 전달 계수를 가질 수 있으며 배플을 통과하는 양(플럭스 표면)을 측정하는 데 사용할 수 있습니다.

Two-dimensional objects that are used to represent thin pieces of geometry. They are moved by the preprocessor to cell faces and act to partially, or completely block the flow of fluid. Baffles can have heat transfer coefficients specified and can be used to measure quantities that pass through them (a flux surface).

경계 조건

도메인의 범위에서 솔루션을 정의합니다. 경계 위치에서 흐름의 실제 상태를 나타내는 경계 조건을 선택하는 것이 중요합니다.

Defines the solution at the extents of the domain. It is important to choose boundary conditions that represent the true condition of the flow at the boundary location.

CFD

CFD (Computational Fluid Dynamics)는 수치 솔루션을 통해 컴퓨터의 유체 흐름을 시뮬레이션 하는 유체 역학의 한 분야입니다.

Computational Fluid Dynamics (CFD), the branch of fluid mechanics dedicated to simulating the flow of fluid on a computer via numerical solutions.

Complements

Complements를 정의합니다. 예를 들어, 솔리드 구의 complements는 솔리드 재료로 둘러싸인 구형 구멍입니다.

The inverse of a shape defines the complement. For example, the complement of a solid sphere is a spherical hole surrounded by solid material.

Client

클라이언트 컴퓨터는 자신이 FLOW-3D를 실행하고 있지만, FLOW-3D 소프트웨어 라이선스는 다른 컴퓨터 (서버 컴퓨터)에서 획득하는 컴퓨터를 의미합니다.

A client machine is a computer that runs FLOW-3D  but acquires the software license from a different machine (the server machine)

Components

Components는 공간의 개체를 정의하며 하위 구성 요소로 구성됩니다. 구성 요소는 열 전도율, 비열 및 표면 거칠기와 같은 재료 특성을 가질 수 있습니다.

Components define objects in space and are comprised of subcomponents. A component can have material properties such as thermal conductivity, specific heat and surface roughness.

Custom result

시뮬레이션 중 또는 완료 후 사용자가 생성한 데이터를 그래픽으로 표시합니다. 생성하려면 사용자가 flsgrf결과 파일을 연 다음 플로팅 매개 변수(예 : 플로팅 할 도메인 부분, 플로팅 할 수량 등)를 선택해야 합니다.

Graphical displays of data generated by the user during the simulation or after it has completed. To generate, the user must open an flsgrf results file and then select the plotting parameter (e.g., portion of domain to plot, quantity to plot, etc.).

Domain

지배 방정식을 풀 영역입니다. 이것은 메쉬의 범위에 의해 정의됩니다.

The region in which the governing equations are to be solved. This is defined by the extents of the mesh.

Diagnostics

전 처리기 및 솔버의 진행 상황과 오류 및 경고에 대한 정보가 포함된 파일 세트입니다.

A suite of files that contain information on the progress of the preprocessor and solver as well as errors and warnings.

EPSI

압력/연속 반복이 어느 지점에서 수렴되는지를 결정하는데 사용된 수렴 기준입니다. 기본 숫자 설정을 사용하면 이 값은 FLOW-3D에 의해 자동으로 계산되며 시간 단계가 증가함에 따라 작아집니다.

The convergence criterion that was used to determine at what point the pressure/continuity iterations have converged. With the default numerical settings, this value is automatically computed by FLOW-3D  and becomes smaller as the time step increases.

Existing result

prpplt.* 또는 flsplt.* 파일은 전처리 종료 솔버 실행 종료시 또는 자동으로 생성되는 플롯 파일입니다.

A plot file that is automatically created, either at the end of preprocessing or the end of the solver run- prpplt.* or flsplt.*.

F3D_HOME

FLOW-3D 프로그램 파일이 있는 디렉토리를 정의하는 환경 변수.

Environment variable that defines the directory where the FLOW-3D  program files are located.

Floating license

FLOW-3D는 서버 시스템에 라이센스를 액세스하는 각 클라이언트 컴퓨터와 컴퓨터 네트워크에서 실행합니다. 허용하는 라이센스 최대 동시 시뮬레이션 수는 구매한 솔버 토큰 수에 의해 제한됩니다.

A license that allows FLOW-3D  to be run on a network of computers with each client machine accessing the license on a server machine. The maximum number of concurrent simulations is limited by the number of solver tokens purchased.

Flsgrf file

솔버가 생성한 결과 파일. 이 파일은 사전에 정의된 시간 간격으로 생성된 정보를 포함하며 그래픽 디스플레이를 생성하는 데 사용됩니다. 사용자 정의 플로팅 중에 포스트 프로세서에서 사용합니다.

Results file produced by the solver. This file contains information produced at predefined time intervals and is used to produce graphical displays. Used by the postprocessor during custom plotting.

Flsplt file

솔버가 자동으로 생성한 플롯 파일입니다. 이 파일에는 시뮬레이션의 히스토리 데이터, 메시 등에 대한 기본 정보와의 $GRAFIC 이름 목록에 사전 정의된 그래픽 요청이 포함되어 prepin.* 파일 안에 있습니다.

Plot file produced automatically by the solver. This file contains basic information on history data, mesh, etc. from the simulation as well as any pre-defined graphics requests in the $GRAFIC namelist in prepin.*.

Fluid #1 surface area

선택한 길이 단위의 자유 표면 영역을 제곱 됩니다. 인터페이스가 예리한 문제에만 해당됩니다.

The free-surface area in the chosen length units squared. This is only relevant for problems with a sharp interface.

Fluid thermal energy

영역에 존재하는 모든 유체에 포함된 총 열 에너지 (에너지 전송이 켜져 있는 시뮬레이션에만 해당).

The total thermal energy contained by all the fluid present in the domain (relevant only for simulations with energy transport turned on).

Free surface

유체와 유체 사이의 인터페이스. FLOW-3D에서 이 인터페이스는 전단이 없는 것으로 가정되며, 이는 빈 공간에 있는 가스가 유체에 무시할 수 있는 트랙션을 발휘함을 의미한다.

The interface between fluid and void. In FLOW-3D , this interface is assumed to be shear-free, meaning that any gas in the void space exerted negligible traction on the fluid.

GUI

” Graphical User Interface”.  GUI는 사용자가 FLOW-3D를 제어할 수 있는 그래픽 패널, 대화 상자 및 창을 제공합니다.

“Graphical User Interface”. The GUI presents the graphical panels, dialog boxes and windows that allow the user to control FLOW-3D .

Iteration count

각 시간 단계에서 필요한 압력/연속 반복 횟수입니다. 압력/연속성 반복은 유체 볼륨이 유지되도록 하고 유체 전체에서 올바른 압력을 계산하는 데 필요합니다.

The number of pressure/continuity iterations required at each time step. The pressure/continuity iterations are necessary to ensure that the fluid volume is maintained and to compute the correct pressure throughout the fluid.

License file

사용자가 FLOW-3D 를 실행할 수 있도록 암호화된 정보가 포함된 Flow Science에서 제공하는 전자 파일 입니다.

Electronic file provided by Flow Science that contains encrypted information enabling the user to run FLOW-3D .

License server

플로팅 라이센스 시스템의 작동을 활성화하기 위해 FLEXlm 라이센스 소프트웨어가 설치된 시스템. FLOW-3D는 License Server에 설치할 필요가 없습니다.

Computer on which the FLEXlm licensing software is installed to enable the operation of a floating license system. FLOW-3D  does not need to be installed on the license server.

Licensing

FLOW-3D 실행을 제어하는 ​​FLEXlm 소프트웨어.

FLEXlm software that controls the running of FLOW-3D .

Max. residual

압력/연속성 반복의 최종 반복에서 연속성 방정식의 실제 발산. 이 값은 메시지가 나타나지 않는 한 일반적으로 epsi보다 작습니다 .

The actual divergence of the continuity equation on the final iteration of the pressure/continuity iterations. This value is usually smaller than epsi unless the message, pressure iteration did not converge in xxxx iterations appears.

Mean kinetic energy

모든 계산 셀의 운동 에너지의 합을 도메인에 존재하는 총 유체 질량으로 나눈 값입니다. 이 양이 시간이 지남에 따라 변하지 않으면 정상 상태에 도달했음을 나타내는 좋은 지표입니다.

The sum of kinetic energy of all the computational cells, divided by the total mass of fluid present in the domain. When this quantity ceases to change over time, it is a good indicator that steady-state has been reached.

Node-locked license

특정 컴퓨터에 고정된 라이센스. 노드 잠금 라이센스는 네트워크를 통해 액세스 할 수 없으므로 일반적으로 모든 작업을 한 컴퓨터에서 수행해야하는 경우에만 사용됩니다.

A license that is locked to a particular computer. A node-locked license cannot be accessed across a network, and so is typically only used when all work is to be done on one computer.

Non-inertial reference frame

가속화되는 참조 프레임. 비 관성 참조 프레임은 움직이는 컨테이너를 모방하는 데 사용할 수 있습니다.

A frame of reference that is accelerating. A non-inertial reference frame can be used to mimic a moving container.

Pltfsi

1D 및 2D 플롯을 생성하는 FLOW-3D에 포함된 그래픽 디스플레이 프로그램.

Graphics display program included with FLOW-3D  that produces 1D and 2D plots.

Postprocessor

FLOW-3D 내의 Postprocessor 프로그램은 FLOW-3D 또는 타사 시각화 프로그램에서 읽을 수 있는 데이터 파일을 생성하거나 타사 소프트웨어 프로그램에서 읽을 텍스트 데이터를 생성하는 솔버 출력 데이터를 처리하는 프로그램입니다.

The program within FLOW-3D  that processes the solver output data to produce data files that can be read by FLOW-3D ’s or third-party’s visualization programs, or produce text data to be read by third party software programs.

Prepin file

FLOW-3D 시뮬레이션을 실행하는데 필요한 모든 정보가 포함된 텍스트 파일 입니다. GUI를 사용하거나 텍스트 편집기를 사용하여 수동으로 작성할 수 있습니다.

Text file that contains all of the information necessary to create a FLOW-3D  simulation. It can be created using the GUI or manually with a text editor.

Preprocessor

솔버의 실행을 준비하기 위해 입력 파일을 기반으로 메쉬 및 초기 조건을 생성하는 FLOW-3D 내의 프로그램 입니다.

The program within FLOW-3D  that generates the mesh and initial conditions based on the input file in preparation for the running of the solver.

Prpgrf file

전처리기에 의해 생성된 결과 파일로 전 처리기의 정보를 포함하며 후 처리기에서 사용자 플롯을 생성하는 데 사용할 수 있습니다. 이 파일은 미리보기 버튼을 선택하거나 시뮬레이션에서 사전 프로세서(runpre 사용)를 실행하는 경우에만 실행됩니다.

Results file produced by the preprocessor. Contains information from the preprocessor and can be used by the postprocessor to create custom plots. This file is produced only when the Preview button is selected or if only the pre-processor is run on the simulation (using runpre).

Prpplt file

전처리기에 의해 자동으로 생성된 파일을 플롯 합니다. 메시, 구성 요소, 초기 조건 및 재료 특성에 대한 정보가 포함되어 있습니다.

Plot file produced automatically by the preprocessor. Contains information on meshing, components, initial conditions and material properties.

Restart simulation

이전 시뮬레이션에서 계속되는 시뮬레이션입니다. 이전 시뮬레이션의 결과는 다시 시작 시뮬레이션을 위한 초기 조건 및 (선택적으로) 경계 조건을 생성하는 데 사용됩니다.

A simulation which continues from a previous simulation. The results from the previous simulation are used to generate the initial conditions and (optionally) boundary conditions for the restart simulation.

Server

라이센스 서버를 호스팅하는 시스템

The machine that hosts the license server.

Stability limit

각 시간 단계에서 사용할 수 있는 최대 시간 단계. 더 큰 시간 단계는 수치적 불안정성과 비물리적 결과로 이어질 것이다.

The maximum time step that can be used during each time step. A larger time step will lead to numerical instabilities and nonphysical results.

STL (Stereolithography) File

.STL 파일 형식은 일련의 삼각형이 있는 솔리드 모델의 표면에 근접한 표준 데이터 전송 형식이다. 삼각형은 가장자리에서 결합해야 하며 일관된 방향을 가리키는 정규식이 있어야 한다.

The .STL file format is a standard data transmission format that approximates the surfaces of a solid model with a series of triangles. The triangles must join at the edges and must have normals that point in a consistent direction.

Solid fraction

응고된 영역의 유체 분율 (응고 모델이 켜져 있는 시뮬레이션에만 해당).

The fraction of fluid in the domain that has become solidified (relevant only for simulations where the solidification model has been turned on).

Solver

입력 파일에 정의된 흐름 문제를 시뮬레이션하는 방정식을 계산하는 FLOW-3D 내의 솔버 프로그램 입니다.

The program within FLOW-3D  that solves the system of equations that simulate the flow problem defined in the input file.

STL Viewer

스테레오리소그래피(STL) 파일을 표시하는 특수 유틸리티입니다. STL 파일은 CAD 소프트웨어로 제작되며 3 차원 객체의 표면을 형성하는 많은 삼각형으로 구성됩니다. 의 STL 뷰어 FLOW-3D는 메인 메뉴에서 유틸리티/STL 뷰어를 클릭하여 GUI를 통해 액세스 할 수 있습니다. 그러면 뷰어가 별도의 창에서 열립니다. 메쉬 및 형상 탭에서 STL 파일을 열고 볼 수도 있습니다.

A special utility that displays stereolithography (STL) files. STL files are produced by CAD software and are composed of many triangles that form the surface of a three-dimensional object. The STL Viewer in FLOW-3D  is accessible via the GUI by clicking Utilities/STL Viewer in the main menu. This causes the viewer to open in a separate window. STL files can also be opened and viewed in the Meshing and Geometry tab.

Subcomponents

하위 구성 요소는 구성 요소라고하는 더 큰 모양을 형성하기 위해 결합할 수 있는 기하학적 모양입니다. 하위 구성 요소는 재료를 추가하거나 (고체로) 다른 하위 구성 요소에서 재료를 제거하거나 (구멍으로) 또는 모양 외부에 재료를 추가하도록 정의할 수 있습니다.

Subcomponents are geometric shapes that can be combined to form larger shapes, called components. A subcomponent can be defined to add material (as solids), remove material from other subcomponents (as holes), or add material outside of the shape (as a complement).

Time-step size

계산에 사용된 실제 시간 단계. 이 값은 안정성 한계와 같거나 작을 수 있습니다.

The actual time step used in the computation. This value can be equal to or less than the stability limit.

Units

Units are based upon the values set for the physical properties. Items such as mesh block extents and cell lengths automatically conform to the units used for setting these physical properties.

단위는 물리적 특성에 설정된 값을 기반으로 합니다. 메쉬 블록 범위 및 셀 길이와 같은 항목은 이러한 물리적 속성을 설정하는 데 사용되는 단위를 자동으로 따릅니다.

Volume error (%)

주어진 시간에 도메인에 존재하는 총 유체의 백분율로 설명되지 않은 유체 부피의 백분율을 의미합니다. 따라서 단순히 총 부피가 작기 때문에 유체가 시스템 밖으로 배출되는 시뮬레이션에서 큰 비율의 부피 오류가 발생할 수 있습니다.

The percentage of fluid volume not accounted for as a percentage of the total fluid present in the domain at a given time. Therefore, a large percentage volume error can occur for simulations where fluid is draining out of the system simply because the total volume present is small.

Volume of fluid #1

선택한 길이 단위로 입방체에 존재하는 유체 #1의 총 부피입니다. 2 유체 문제의 경우, 유체 #2의 부피는 항상 도메인 부피에서 유체 #1의 부피를 뺀 값입니다.

The total volume of fluid #1 present in the system, in the chosen length units cubed. For two-fluid problems, the volume of fluid #2 is always the domain volume minus the volume of fluid #1.

Wall shear stress

FLOW-3D 옵션은 벽면 및 객체 인터페이스에서 전단 응력 계산을 켜거나 끌 수 있도록 해줍니다. “no-slip” 인터페이스의 효과를 모델링 하려면 벽면 전단 응력을 켜야 합니다.

The FLOW-3D  option that allows the user to turn on or off the computation of shear stress at wall and object interfaces. Wall shear stress must be turned on to model the effect of “no-slip” interfaces.

Workspace

작업 공간은 시뮬레이션 프로젝트를 위한 파일 컨테이너입니다. 작업 공간은 사용자가 FLOW-3D 뿐만 아니라 하드 드라이브에서도 작업을 구성하는 데 도움이 됩니다.

A workspace is a file container for simulation projects. Workspaces help the user organize their work, not only within FLOW-3D , but also on their hard drive.

FLOW-3D 및TruVOF는 미국 및 기타 국가에서 등록 상표입니다.

FLOW-3D 기술자료로 이동

유압 헤드 계산에서는 유선이 평행하다고 가정

FLOW-3D Output variables(출력 변수)

Output variables(출력 변수)

FLOW-3D에서 주어진 시뮬레이션의 정확한 출력은 어떤 물리적 모델, 출력 위젯에 정의된 추가 출력 및 특정 구성 요소별 출력에 따라 달라집니다. 이 문서는 FLOW-3D의 출력에 대해 좀 더 복잡한 출력 변수 중 일부를 참조하는 역할을 합니다.

FLOW-3D Additional output
FLOW-3D Additional output

Distance Traveled by Fluid(유체로 이동 한 거리)

때로는 유체 입자가 이동한 거리가 중요한 경우도 있습니다. FLOW-3D에서 사용자는 모델 설정 ‣ 출력 위젯에서 유체가 이동한 거리에 대한 출력을 요청할 수 있습니다. 이 기능은 유체가 흐름 영역(경계 또는 질량 소스를 통해)에 들어간 시간 또는 유체가 도메인을 통해 이동한 거리를 계산합니다. 이 기능은 모든 시뮬레이션에도 사용할 수 있으며, 특별한 모델을 사용할 필요가 없으며, 흐름에도 영향을 미치지 않습니다. 이 모델을 사용하려면 출력 위젯으로 이동하고 추가 출력 섹션에서 “Distance traveled by fluid” 옆의 체크상자를 선택하십시오.

 노트

추가 출력 섹션은 출력 위젯의 모든 탭에서 사용할 수 있습니다.

유체 도착 시간

유체 도착 시간을 아는 것은 종종 유용합니다. 예를 들어 주조 시뮬레이션에서 주입 시간을 결정하는 데 사용할 수 있습니다. 제어 볼륨은 충전 프로세스 동안 여러 번 채워지고 비워지기 때문에 계산 셀이 채워지는 처음과 마지막 시간 모두 기록되고, 후 처리를 위해 저장될 수 있습니다. 이 작업은 출력 위젯과 추가 출력 섹션 내에서 유체 도착 시간 확인란을 선택하여 수행됩니다.

 노트

이 출력 옵션은 1 유체 자유 표면 흐름에만 사용할 수 있습니다.

유체 체류 시간

때로는 유체가 계산 영역 내에서 보내는 시간인 체류시간을 아는 것이 유용합니다. 이는 출력 ‣ Output ‣ Additional Output ‣ Fluid residence time 확인란을 선택하여 수행합니다. 여기서 S로 지정된 이 변수에 대한 전송 방정식은 단위 소스 항과 함께 Solve됩니다.

유체 체류 시간(Fluid residence time)
유체 체류 시간(Fluid residence time)

여기에서 t는 시간이며 u는 유체 속도입니다.

S의 단위는 시간이다. 계산 도메인에 들어가는 모든 유체에 대한 S의 초기값은 0입니다.

의 값은 항상 second order체계를 가진 데이터로부터 근사치를 구합니다.

이 출력 옵션은 1 유체 및 2 유체 유량 모두에 사용할 수 있습니다.

 노트

경계 조건 또는 소스에서 도메인으로 유입되는 유체가 이미 도메인에 있는 유체와 혼합될 때 체류가 감소하는 것처럼 보일 수 있습니다.

Wall Contact Time

벽면 접촉 시간 출력은 (1)개별 유체 요소가 특정 구성 요소와 접촉하는 시간 및 (2)특정 구성 요소가 유체와 접촉하는 시간을 추적합니다. 이 모델은 액체 금속이 모래 오염물과 접촉했을 때 오염과 상관 관계가 있는 proxy 변수를 제공하기 위한 것입니다. 이 출력은 최종 주조물에서 오염된 유체가 어디에 있는지 확인하는 데 사용될 수 있습니다. 접촉 시간 모델의 또 다른 해석은, 예를 들어, 용해를 통해 다소 일정한 비율로 화학물질을 방출하는 물에 잠긴 물체에 의한 강의 물의 오염입니다.

모델은 Model Setup ‣ Output ‣ Wall contact time 박스를 확인하여 활성화됩니다. 또한 Model Setup ‣ Output ‣ Geometry Data section의 각 구성요소에 대해 해당 구성요소를 계산에 포함하기 위해 반드시 설정해야 하는 Contact time flag가 있습니다.

 추가 정보

Wall Contact Time with Fluid and Component Properties: Contact Time with Fluid for more information on the input variables를 참조하십시오.

 노트

이 모델은 실제 구성 요소, 즉 고체, 다공성 매체, 코어 가스 및 충전 퇴적물 구성 요소로 제한됩니다. 접촉 시간은 유체 # 1과 관련해서만 계산됩니다.

2. 형상 데이터
2. 형상 데이터

Component wetted are

Fluid 1과 접촉하는 구성 요소의 표면 영역은 관심 구성 요소에 대한 Model Setup ‣ Output ‣ Geometry Data ‣ Wetted area 옵션을 활성화하여 History Data로 출력 될 수 있습니다.

구성 요소의 힘과 토크

Forces

Model Setup ‣ Output ‣ Geometry Data ‣ Forces 옵션을 활성화하면 부품에 대한 압력, 전단력, 탄성 및 벽 접착력을 History Data에 출력할 수 있습니다.

압력을 가지지 않은 셀(즉, 도메인 외부에 있거나 다른 구성 요소 안에 있는 셀)이 구성 요소 주변의 각 셀에 대한 압력 영역 제품을 합산하는 동안 어떻게 처리되는지를 제어하는 압력 계산에 대한 몇 가지 추가 옵션이 있습니다. 기본 동작은 이러한 셀에서 사용자 정의 기준 압력을 사용하는 것입니다. 지정되지 않은 경우 기준 압력은 초기 무효 압력인 PVOID로 기본 설정됩니다. 또는, 코드는 Reference pressure is code calculated 옵션을 선택하여 구성요소의 노출된 표면에 대한 평균 압력을 사용할 수 있습니다.

마지막으로, 일반 이동 물체의 경우, 규정된/제약을 받는 대로 물체를 이동시키는 힘을 나타내는 잔류 힘의 추가 출력이 있습니다.

Torques

Model Setup ‣ Output ‣ Force 옵션이 활성화되면 구성 요소의 토크가 계산되고 History Data에 출력됩니다. 토크는 힘-모멘트에 대한 기준점 X, 힘-모멘트에 대한 기준점 Y, 정지 구성 요소에 대한 힘-모멘트 입력에 대한 기준점 Z에 의해 지정된 지점에 대해 보고됩니다. 참조점의 기본 위치는 원점입니다.

General Moving Objects에는 몇 가지 추가 참고 사항이 있습니다. 첫째, 토크는 (1) 6-DOF 동작의 질량 위치 중심 또는 (2)고정축 및 고정점 회전의 회전 축/점에 대해 보고됩니다. 힘에서 행해지는 것과 마찬가지로, 규정된/제한된 바와 같이 물체를 이동시키는 토크를 나타내는 잔류 토크의 출력도 있습니다.

 노트

힘 및 토크 출력은 각 지오메트리 구성 요소의 일반 히스토리 데이터에 기록됩니다. 출력은 개별 힘/토크 기여 (예: 압력, 전단, 탄성, 벽 접착) 및 개별 기여도의 합으로 계산된 총 결합력/토크로 제공됩니다.

Buoyancy center and metacentric height (부력 중심 및 메타 중심 높이)

일반 이동 객체의 부력과 안정성에 대한 정보는 각 구성 요소에 대해 모델 설정 Setup 출력 ‣ 기하학적 데이터 ‣ 부력 중심 및 도량형 높이 옵션을 활성화하여 History Data에서 출력할 수 있습니다. 이렇게 하면 구성 요소의 중심 위치와 중심 높이가 출력됩니다.

  1. Advanced

FLOW-3D Advanced Output Option
FLOW-3D Advanced Output Option

Fluid vorticity & Q-criterion(유체 와동 및 Q 기준)

와동구성 요소뿐만 아니라 와동 구조를 위한 Q-criterion을 계산하고 내보내려면 Model Setup ‣ Output ‣ Advanced 탭에서 해당 확인란을 클릭하여 유체 와동 & Q-criterion을 활성화하십시오.

여기에서:

:  소용돌이 벡터의 다른 구성 요소

 Q-criterion은 속도 구배 텐서의 2차 불변성을 갖는 연결된 유체 영역으로 소용돌이를 정의합니다. 이는 전단 변형률과 와류 크기 사이의 국부적 균형을 나타내며, 와류 크기가 변형률의 크기보다 큰 영역으로 와류를 정의합니다.

Hydraulic Data and Total Hydraulic Head 3D

Hydraulic Data

깊이 기준 유압 데이터를 요청하려면 출력 ‣ 고급으로 이동한 후 유압 데이터 옆의 확인란을 선택하십시오(심층 평균 값과 중력을 -Z 방향으로 가정).

이 옵션은 FLOW-3D가 유압 시뮬레이션에 유용할 수 있는 추가 깊이 평균 데이터를 출력하도록 합니다.

  • Flow depth
  • Maximum flow depth
  • Free surface elevation
  • Velocity
  • Offset velocity
  • Froude number
  • Specific hydraulic head
  • Total hydraulic head

이 수량 각각에 대해 하나의 값 이 메쉬의 모든 (x, y) 위치에서 계산되고 수직 열의 모든 셀에 저장됩니다 (이 수량이 깊이 평균이기 때문에 z 방향으로 데이터의 변화가 없습니다). 변수는 정확도를 보장하기 위해주기마다 계산됩니다. 모든 경우에,  깊이 평균 속도, z- 방향  의 중력 가속도, 유체 깊이, 및 컬럼 내 유체의 최소 z- 좌표입니다.

  • 자유 표면 고도는 수직 기둥의 맨 위 유체 요소에 있는 자유 표면의 z-좌표로 계산됩니다.
  • The Froude number 은   

식으로 계산됩니다.

  • 유체 깊이는 깊이 평균 메쉬 열의 모든 유체의 합으로 계산됩니다.

특정 유압 헤드 

및 총 유압 헤드

변수는 다음에서 계산됩니다.  

 노트

  • 깊이 기준 유압 출력 옵션은 예리한 인터페이스가 있고 중력이 음의 z 방향으로 향할 때에만 유체 1에 유효합니다.
  • 유압 헤드 계산은 스트림 라인이 평행하다고 가정한다는 점을 유념해야 합니다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치되는 경우 이 문제가 발생할 수 있습니다. 이 경우, 유량 표면에서 보고된 유량 평균 유압 헤드는 헤드의 계산에서 흐름 방향이 무시되기 때문에 예상보다 클 수 있습니다.

Total Hydraulic Head 3D(총 유압 헤드 3D)

또한 총 유압 헤드 3D 옵션을 확인하여 국부적(3D) 속도 필드, 플럭스 표면에서의 유압 에너지(배플 참조) 및 플럭스 기반 유압 헤드를 사용하여 유체 1의 총 헤드를 계산할 수 있다. 3D 계산은 국부 압력을 사용하여 수행되며(즉, 압력이 유체 깊이와 관련이 있다고 가정하지 않음) 원통 좌표와 호환됩니다.

 노트

  • 유압 헤드 계산은 스트림 라인이 평행하다고 가정한다는 점을 유념해야 한다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치되는 경우 문제가 발생할 수 있습니다. 이 경우, 플럭스 표면에서 보고된 유량 평균 유압 헤드는 헤드의 계산 시 흐름 방향이 무시되기 때문에 예상보다 클 수 있습니다.
  • 3D 유압 헤드 계산은 입력 파일에 중력이 정의되지 않은 경우 중력 벡터의 크기를 1로 가정합니다.

Flux-averaged hydraulic head

특정 위치 (즉, 배플)의 플럭스 평균 유압 헤드는 다음과 같이 계산됩니다.

Flux-averaged hydraulic head
Flux-averaged hydraulic head

유압 헤드 계산에서는 유선이 평행하다고 가정합니다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치된 경우 (예: 아래에 표시된 것과 같이) 문제가 될 수 있습니다.

유압 헤드 계산에서는 유선이 평행하다고 가정




유압 헤드 계산에서는 유선이 평행하다고 가정

이 경우 플럭스 표면에 보고된 플럭스 평균 유압 헤드는 헤드 계산 시 흐름 방향이 무시되므로 예상보다 클 수 있습니다.

FLOW-3D에는 History Probes, Flux surface, Sampling Volumes의 세 가지 주요 측정 장치가 있습니다. 이러한 장치를 시뮬레이션에 추가하는 방법은 모델 설정 섹션에 설명되어 있습니다(측정 장치 참조). 이들의 출력은 기록 데이터 편집 시간 간격으로 flsgrf 파일의 일반 기록 데이터 카탈로그에 저장됩니다. 이러한 결과는 Analyze ‣ Probe 탭에서 Probe Plots을 생성하여 액세스할 수 있습니다.

히스토리 프로브 출력

히스토리 프로브를 생성하는 단계는 모델 설정 섹션에 설명되어 있습니다(기록 프로브 참조). 시뮬레이션에 사용된 물리 모델에 따라 각각의 History Probe에서 서로 다른 출력을 사용할 수 있습니다. 프로브를 FSI/TSE로 지정하면 유한 요소 메시 안에 들어가야 하는 위치에서 응력/스트레인 데이터만 제공한다. 유체 프로브가 솔리드 형상 구성 요소에 의해 차단된 영역 내에 위치하는 경우, 기하학적 구조와 관련된 수량(예: 벽 온도)만 계산된다. 일반적으로 프로브 좌표에 의해 정의된 위치에서 이러한 양을 계산하려면 보간이 필요하다.

플럭스 표면 출력

플럭스 표면은 이를 통과하는 수량의 흐름을 측정하는데 사용되는 특별한 물체입니다. 플럭스 표면을 만드는 단계는 모델 설정 섹션에 설명되어 있습니다(플럭스 표면 참조). 각 플럭스 표면에 대해 계산된 수량은 다음과 같습니다.

  • Volume flow rate for fluid #1
  • Volume flow rate for fluid #2 (for two-fluid problems only)
  • Combined volume flow rate (for two-fluid problems only)
  • Total mass flow rate
  • Flux surface area wetted by fluid #1
  • Flux-averaged hydraulic head when 3D Hydraulic Head is requested from additional output options
  • Hydraulic energy flow when hydraulic data output is requested
  • Total number of particles of each defined species in each particle class crossing flux surface when the particle model is active
  • Flow rate for all active and passive scalars this includes scalar quantities associated with active physical models (eg. suspended sediment, air entrainment, ect.)

 노트

  • 유속과 입자수의 기호는 유동 표면을 설명하는 함수의 기호에 의해 정의된 대로 흐름이나 입자가 플럭스 표면의 음에서 양으로 교차할 때 양의 부호가 됩니다.
  • 플럭스 표면은 각 표면의 유량과 입자 수가 정확하도록 그들 사이에 적어도 두 개의 메쉬 셀이 있어야 합니다.
  • 유압 데이터 및 총 유압 헤드 3D 옵션을 사용할 때는 유압 헤드 계산이 스트림 라인이 평행하다고 가정한다는 점을 유념해야 한다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치되는 경우 이 문제가 발생할 수 있습니다. 이 경우, 유량 표면에서 보고된 유량 평균 유압 헤드는 헤드의 계산에서 흐름 방향이 무시되기 때문에 예상보다 클 수 있습니다.

샘플링 볼륨 출력

샘플링 볼륨은 해당 범위 내에서 볼륨을 측정하는 3 차원 데이터 수집 영역입니다. 샘플링 볼륨을 만드는 단계는 모델 설정 섹션에 설명되어 있습니다(샘플링 볼륨 참조). 각 샘플링 볼륨의 계산 수량은 다음과 같습니다.

  • 시료채취량 내에서 #1 유체 총량
  • 시료채취량 내 #1 유체질량 중심
  • 샘플링 용적 가장자리에 위치한 솔리드 표면을 포함하여 샘플링 용적 내의 모든 벽 경계에 작용하는 좌표계의 원점에 상대적인 유압력 및 모멘트.
  • 샘플링 용적 내 총 스칼라 종량: 이것은 부피 적분으로 계산되므로 스칼라 양이 질량 농도를 나타내면 샘플링 용적 내의 총 질량이 계산된다. 거주 시간과 같은 일부 종의 경우, 평균 값이 대신 계산됩니다.
  • 샘플링 볼륨 내의 입자 수: 각 샘플링 볼륨 내에 있는 각 입자 등급의 정의된 각 종별 입자 수(입자 모델이 활성화된 경우)
  • 운동 에너지, 난류 에너지, 난류 소실율 및 와류에 대한 질량 평균
  • 표본 체적의 6개 경계 각각에서 열 유속: 유체 대류, 유체 및 고체 성분의 전도 및 유체/구성 요소 열 전달이 포함됩니다. 각 플럭스의 기호는 좌표 방향에 의해 결정되는데, 예를 들어, 양방향의 열 플럭스도 양수입니다. 출력에서 확장 또는 최대 디버그 수준을 선택하지 않는 한 이러한 디버그 수준은 fsplt에 자동으로 표시되지 않습니다.

FLOW-3D 및TruVOF는 미국 및 기타 국가에서 등록 상표입니다.

그림 9. 이 시뮬레이션은 에너지 소산의 추정치를 제공하기 위해 평면과 원통형 흐름 배플이 어디에 위치했는지를 나타낸다.

Hydraulic Energy Losses|유압 에너지 손실

유압 에너지 손실

이 기사는 Laurent Bilodeau, ing에 의해 기고되었습니다. Conception des aménagements de production  Hydro-Québec Équipement .

이 내용은 특히 유압 에너지 소산율 평가를 위해 FLOW-3D가 제공하는 유압 에너지 흐름과 총 수두의 연산을 검토한다. FLOW-3D 에서는 모델 출력에서 직접 시각화할 수 있는 변수 중 총 유압 헤드가 포함되었다. 그림 1은 강 우회 터널(a river diversion tunnel)을 통한 절토에 걸친 총 유압 헤드 분포(total hydraulic head distribution)를 보여준다. 버전 10에서 FLOW-3D는 플럭스 배플로 계산하고 시계열로 시각화하고 외부 도구로 분석할 수 있는 일체형 값으로 유압 에너지 흐름과 총 수두를 도입했다.

하천변환터널을 통한 단면내 총 유압높이 분포
그림 1. 하천변환터널을 통한 단면내 총 유압높이 분포

총 유압 에너지

베르누이의 방정식

수압 에너지, eG는 흐름에서 물의 입자의 잠재력과 운동 에너지의 합이다. 에너지 밀도로서 J/m³으로 표현되며, 베르누이의 방정식(Eq. 1)에 의해 주어진다.

(1) \displaystyle {{e}_{G}}\quad =\quad p\ -g\rho z+\rho \frac{{\left( {{{u}^{2}}+{{v}^{2}}+{{w}^{2}}} \right)}}{2}

기호 의미가 있는 곳

e G유압 에너지 밀도(J/m3 )
p압력(Pa ≡ N/m2 ≡ J/m3 )
g중력의 가속도( – 9,81m/s2 )
ρ밀도(kg/m3)
u, v, wx, y 및 z(m/s) 단위의 속도
z일부 기준 수준 이상의 높이(m) 또는 고도

수력 에너지 단순화된 계단식

일반적으로 에너지는 스스로를 변형시키지만 결코 손실되지 않는 전통적인 양으로 간주된다. 토목 공학에서 물의 흐름을 나타내기 위해, 에너지 변환을 중력 전위 에너지로 시작하여 운동 에너지로 변환한 다음 열 에너지로 변환하는 계단식 에너지로 상상하기에 충분한 경우가 많다. 또한 처음 두 형태(잠재성과 운동성)의 양만을 명시적으로 모델링하여 에너지 캐스케이드의 범위를 더욱 제한하는 것이 일반적이다.

상층 분지에서 보를 거쳐 정지 분지로 이동하는 물 입자의 일부 궤적.
그림 2. 상층 분지에서 보를 거쳐 정지 분지로 이동하는 물 입자의 일부 궤적.

수압 에너지 캐스케이드는 그림 2와 같이 보에서 풀로의 유량이 떨어지는 경우에 잘 나타난다.

그림에 표시된 입자의 트랙을 따라가십시오.

  • 위치 A에서는 저수지의 상류에서 물 입자는 거의 움직이지 않고 있다.
  • 위치 B에서 입자는 B 위의 자유 표면이 약간 낮아짐에 따라 일부 위치 에너지를 희생하여 속도를 얻었다.
  • 위치 C에서는 입자가 자유 낙하 궤적으로 유체를 따르므로 더 많은 위치 에너지가 운동에너지로 변형되었다.
  • 하강 흐름이 하부 풀의 물과 접촉하면 활발한 모멘텀 교환이 이루어지며 초기 유압 에너지의 상당 부분이 격동의 에너지 폭포와 점성 공정을 통해 열로 손실되었다.
  • 위치 D에서 입자는 위치 A, B, C에 비해 낮은 유압 에너지로 영역을 떠난다.

A에서 B, C로 이동하는 동안, 점성과 난류 과정은 대개 흐름에 거의 영향을 미치지 않는다. 총 유압 에너지 eG는 필요시 작은 손실 조건을 고려하여 질량처럼 보존된 양으로 취급될 수 있다. C의 다운 스트림에서, 이 전통적인 수력 에너지(conservative hydraulic energy)의 모델은 더 큰 규모의 에너지 손실 조건과 흐름에 미치는 영향을 고려함으로써 확장될 수 있다.

질량 및 에너지 예산

볼륨 컨트롤

eG와 질량 밀도 ρ의 수송은 모두 나중에 분명해질 이유로 감시되어야 한다; 이것은 단순히 당연하게 여겨지고 있다.

흐름에 의한 eG와 질량밀도 ρ의 수송은 아래 CV로 표기된 제어량 및 가우스의 발산 법칙의 도움으로 분석하기 쉽다.

eG와 질량 밀도 ρ의 수송은 모두 나중에 분명해질 이유로 감시되어야 한다; 이것은 단지 지금 당연하게 여겨지고 있다. 흐름에 의한 eG와 질량밀도 ρ의 수송은 아래 CV로 표기된 제어량 및 가우스의 발산 법칙의 도움으로 분석하기 쉽다.
eG와 질량 밀도 ρ의 수송은 모두 나중에 분명해질 이유로 감시되어야 한다; 이것은 단지 지금 당연하게 여겨지고 있다. 흐름에 의한 eG와 질량밀도 ρ의 수송은 아래 CV로 표기된 제어량 및 가우스의 발산 법칙의 도움으로 분석하기 쉽다.

CV는 다음 규칙을 따르는 한 하나의 선택사항의 정의 표면으로 둘러싸인 볼륨이다.

  • 정의 표면은 스스로 교차하지 않는 한 임의의 형태를 가질 수 있다.
  • 표면은 각 패치가 다른 패치와 물샐틈없는 가장자리로 연결되어 있는 한 패치로 구성될 수 있다.

CV의 부피는 밀폐된 질량이나 에너지와 같은 적분, 자체 보존 수량을 계산하는 데 사용된다.

CV의 표면은 들어오고 나가는 플럭스를 정의하기 위해 사용되며, 밀폐된 수량에 대한 예산을 세우고 그 시간 이력을 감시할 수 있다.

그림 3은 떨어지는 물 분사기의 특성을 분석하는 데 사용할 수 있는 제어 부피의 예를 제시한다. 이 제어 볼륨으로 유입되고 유출되는 유일한 것은 제트기 자체로서 왼쪽 상단에서 들어오고 오른쪽 하단에서 떠난다.

FLOW-3D의 고정형상 제어량

FLOW-3D를 사용하면 고정된 형태와 위치의 CV를 세 가지 기본 형태의 플럭스 배플의 도움을 받아 쉽게 정의할 수 있다.

  • 구(Sphere)들은 닫힌 표면이다.
  • 실린더는 양끝이 개방되어 있으므로, 실린더의 끝이 흐르지 않도록 유량 한계 밖으로 뻗어나가도록 주의해야 한다.
  • 전체 흐름 영역 또는 하위 도메인을 교차시켜 CV를 조립하는 데 사용할 수 있는 평면 직사각형 패치

그림 4는 세 가지 유형의 플럭스 배플을 계산 메쉬로 렌더링한 후에 볼 수 있는 실제 모델에서 그린 예다. 그것들은 불투명한 것으로 렌더링되지만 그것들이 배플을 측정하는 유일한 플럭스로 정의된다면 흐름에 완전히 스며들 수 있다.

(2) hG≡eG/-gρ

(3) hG=z+

그림 4. 표본 망사 내에 렌더링된 평면, 원통형 및 구형 형상의 플럭스 배플 예제
그림 4. 표본 망사 내에 렌더링된 평면, 원통형 및 구형 형상의 플럭스 배플 예제
그림 5. 튜브 또는 펜스톡을 절단하는 수직 단면 쌍을 결합하여 정의된 두 개의 제어 볼륨. 흐름은 총 유압 헤드에 따라 색상이 지정된다.
그림 5. 튜브 또는 펜스톡을 절단하는 수직 단면 쌍을 결합하여 정의된 두 개의 제어 볼륨. 흐름은 총 유압 헤드에 따라 색상이 지정된다.

그림 5는 평면 배플 표면을 사용하여 두 가지 제어 볼륨을 정의하는 방법을 보여준다.

  • 제어 볼륨 DC, 긴 입방형 모양은 6개의 면으로 구성되어 있다. 반대편 두 면은 C와 D라고 불리는 배플이다. 밑면과 윗면이 그려지고 그 위치는 흐름 영역보다 훨씬 위아래 있는 한 중요하지 않다. 앞면과 뒷면은 큐브의 남은 두 면이며, 그들의 위치 또한 앞과 뒤가 잘 있는 한 중요하지 않다. 흐름 영역의
  • 제어 볼륨 BA도 마찬가지로 정의된다. 그것은 자유로운 표면 흐름을 포함하는 하위 도메인인 입구 포탈의 일부를 둘러싸고 있다. 자유 표면 흐름은 면 B와 A의 유입량 차이가 수위(및 수량)에 변화 속도를 부여하고 진동을 유발하여 천천히 감쇠하거나 전혀 감쇠하지 않기 때문에 진정한 안정 상태에 이르기 더 어렵다. 이 경우, 질량과 에너지의 신뢰할 수 있는 예산은 성질의 진화가 정지해 있는 에피소드를 식별하고 평균화를 수행하기 위해 흐름의 시계열을 처리함으로써 이루어진다.

그림 5의 수직 플럭스 배플은 사용 가능한 수직 표면(DB, DA, CB, CA)의 순열을 사용하여 몇 개의 다른 CV를 정의하는데 사용할 수 있다.

에너지 예산

수력 에너지 균형은 점성 열 생성을 손실로 명시적으로 표시하기 때문에 정의에 따라 누출된다. 이상적으로, 수력 에너지 캐스케이드는 다른 원인으로 인해 에너지를 잃지 않아야 하며 어떤 것도 얻지 않아야 한다. 여기서 다시 수치 모델로 연습하면 약간 다른 그림이 그려진다. 모든 수치 모델에는 인위적인 소스 또는 수력 에너지 싱크가 있다.

예를 들어, 셀 크기가 에너지 전달 흐름 특징보다 훨씬 작을 때 계산 메쉬에 흐름 간섭이 발생한다. 셀 크기가 충분히 작지 않을 때, 속도 대비는 자연 흐름에서보다 더 큰 공간 범위에 걸쳐 확산된다. 그 확산은 운동 에너지를 약간 작게 만들고 자연 현상보다는 그리드 효과에 기인하는 에너지 방산 역할을 한다.

에너지 예산을 모니터링하면 모델의 신뢰성에 대한 단서를 얻을 수 있으며 다른 매개변수 값이나 그리드 셀 크기를 사용하는 런을 비교하는 데 사용할 수 있다. 인위적인 손익이 관리되고 있을 때 유압 에너지 소산 속도는 종종 수치 모델에서 얻은 중요한 결과 중 하나이며 설계 변동을 구별하는 데 중요하다.

총 유압 헤드

에너지 밀도로서의 총 유압 헤드

아래 hG로 상징되는 총 유압 헤드는 Eq. 1의 총 유압 에너지 eG를 단순히 (-g ρ )로 나눈 값이다.

(2) \displaystyle {{h}_{G}}~\equiv ~{{e}_{G}}/\text{ }-g\text{ }\rho

(3) \displaystyle {{h}_{G}}\ =\quad z\ \ +\frac{p}{{-g\rho }}\ \ +\frac{{\left( {{{u}^{2}}+{{v}^{2}}+{{w}^{2}}} \right)}}{{-2g}}

다음과 같은 경우를 제외하고 기호가 모두 이미 소개된 경우:

hG, 총 유압 헤드(m)

총 유압 헤드는 다음과 같은 합이기 때문에 합계로 인정된다.

  • 입면체 헤드 z + p/(-gρ)
  • 운동 에너지 헤드 u²/(-2g)

유량에서 측정한 입압 헤드는 물의 국부적 자유 표면 고도를 잘 측정할 수 있는 것으로 간주된다.

저수지 및 강의 평온한 범위에서는 흐름 속도가 운동 에너지 헤드가 무시해도 될 정도로 충분히 낮아서 때때로 hG가 입압 헤드와 동일하다고 간주될 수 있다.

총 유압 헤드 hG는 때로 정체 높이라고 불리기도 한다. 흐름 내에 유체의 입자가 있는 경우, 모든 속도가 갑자기 위쪽으로 향하게 되고 주변 유체가 장애물이 되지 않을 경우 입자가 도달하는 최종 높이다.

총 유압 헤드 hG는 교각과 교대 등 유압 설계에 있어 유비쿼터스 변수다. 그것은 또한 채널과 펜스탁과 같이 에너지가 관리된 방식으로 전달되거나 소멸되어야 할 때마다 흐름의 수압 에너지를 나타낸다. hG는 다른 엔지니어링 작업의 키 높이와 동일한 고도 척도를 사용하여 엔지니어링 도면에 주석으로 나타날 수 있기 때문에 선택의 변수다.

총 유압헤드의 통합값으로부터의 유압에너지 소산

두 흐름 단면 A와 B 사이에 발생하는 에너지 소산에 대한 일체적 접근방식은 흐름의 하향 방향에서 HG의 감소로부터 계산된다.

HG의 도움을 받아 A와 B 사이의 에너지 소산을 계산하기 위해 각 단면에서의 HG 값을 먼저 –ρg에 곱하여 에너지 밀도 흐름으로 만든 다음 Q에 곱하여 총 유압 에너지 흐름으로 주조한다.
두 횡단면의 에너지 흐름의 차이를 보면, 두 횡단면에서 부피 흐름 Q가 동일한 상황에서, 아래와 같이 상류 횡단면에서 다운스트림 단면으로 이동하는 흐름에서 발생하는 유압 에너지 손실을 산출한다.

그림 6. 터널을 통해 흐르는 강물 회항, 왼쪽에서 오른쪽으로 흐르는 흐름 속도에 따라 채색된다.
그림 6. 터널을 통해 흐르는 강물 회항, 왼쪽에서 오른쪽으로 흐르는 흐름 속도에 따라 채색된다.
그림 7. 같은 강물 전환, 교차점을 측정하는 물과 유동성만 보여준다.
그림 7. 같은 강물 전환, 교차점을 측정하는 물과 유동성만 보여준다.

업스트림 리치는 유입과 배출 흐름의 차이에 따라 수위가 변동하는 볼륨 밸런스의 예를 제시한다. 동시에, 터널을 통과하는 유량의 비율은 상류와 하류 사이의 압력 균형에서 기인하며, 터널 벽의 마찰과 분리된 구조물에서의 흐름 에너지 손실과 통로를 따라의 전환이 큰 역할을 한다. 그림 10은 FLOW-3D에서 플럭스 배플로 알려진 수많은 흐름 측정 단면을 보여준다. 이들의 용도는 다음과 같다.

  • 추가 분석을 위한 유용한 기준으로 특정 모델 실행의 흐름 체계의 안정성 평가
  • 종단 종단 수위 및 수력 에너지 흐름의 그래프 작성 및 분석(수력 에너지 소산율 포함)
  • 설계 변이 간 미세 비교 허용
  • 일반적으로 흐름 동작이 예상에 부합하는지 검증하고, 체크하지 않을 경우 흐름의 진부도를 감소시킬 수 있는 수치적 아티팩트를 검출하고 수정한다.

예제 2 – 자연 암석 표면을 통한 고속 자유 주행

그림 8은 자연 암석의 유유히트레이스와 자유 주행의 예를 보여준다.

이 모델은 지표면의 단위 면적당 수압 에너지 소산율을 평가하는 것을 목적으로 했다. 이 속도는 W/m² 단위로, 자유 주행을 따라 암석 표면의 침식 잠재력을 평가하기 위한 입력값이었다.

그림 8. 플럭스 배플이 어떻게 사용될 수 있는가에 대한 예는 자연 암석에 대한 유출로의 꼬리표에서 찾을 수 있다. 목적은 지표면의 단위 면적당 유압 에너지 소산율을 평가하는 것이다.
그림 8. 플럭스 배플이 어떻게 사용될 수 있는가에 대한 예는 자연 암석에 대한 유출로의 꼬리표에서 찾을 수 있다. 목적은 지표면의 단위 면적당 유압 에너지 소산율을 평가하는 것이다.
그림 9. 이 시뮬레이션은 에너지 소산의 추정치를 제공하기 위해 평면과 원통형 흐름 배플이 어디에 위치했는지를 나타낸다.
그림 9. 이 시뮬레이션은 에너지 소산의 추정치를 제공하기 위해 평면과 원통형 흐름 배플이 어디에 위치했는지를 나타낸다.

그림 9는 도구 자체를 확인하고 소산율 평가를 수행하는 데 사용된 계량장치를 나타낸다. 망사블록도 윤곽이 잡힌다.

원하는 소산 속도를 측정하고, 마찬가지로 중요한 것은 흐름의 품질 및 측정 도구의 평가를 위해 평면 및 원통형 플럭스 배플의 종류가 배치되었다.

평면 플럭스 배플은 제어 볼륨을 구성하고 이를 사용하여 CV 내에서 볼륨 흐름의 안정성과 에너지 소산을 모니터링할 수 있다. 테일레이스에서는 사이드월(sidewall)에 의해 흐름이 잘 담겨 있고 횡단면을 가로질러 상당히 균일하다. 에너지 소산율은 25~50kW/m²이었다.

배출 관문 발치에 원통형 유동 배플이 위치한다. 실린더를 통과하는 평균 체적 유량은 정상적인 유량 변동 때문에 시간 경과에 따라 가변적이었지만 적절한 평균 구간을 취할 때 0이 되는 경향이 있었다. 배플을 통한 순유압 에너지 흐름에 대해 동일한 평균을 취했을 때, 예상대로 음의 값이 산출되었고, 이는 면적으로 나누면 30 kW/m²에 가까웠다. 타원형 수평 단면으로 확장된 또 다른 원통형 흐름 배플도 꼬리 경주가 끝날 무렵에 위치했다. 거기서 만들어진 유사한 검증도 비슷한 합의를 보여주었다.

원통형 유동 배플이 유압 에너지 소산 측정에 예상대로 작용했다는 결론이 나왔다. 그런 다음 방산이 가장 높을 것으로 예상되었던 아래쪽 경사면에 놓인 원통형 배플에 주의를 돌렸다.

그림 10은 자유 주행 위에 위치한 원통형 배플 번호 3을 통해 순 부피와 에너지 흐름의 시계열로, 꼬리표에서 자연 암석 표면으로의 전환 근처를 보여준다. 그림은 두 흐름의 높은 진폭 변동이 존재하며 그 흐름들에 의해 어떤 경향도 잘 숨겨져 있음을 보여준다.

그림 10. 시간의 함수로서, 두 번째 예제의 원통형 플럭스 배플 번호 3을 통한 순 부피 흐름(m³/s) 및 순 유압 에너지 흐름(W)
그림 10. 시간의 함수로서, 두 번째 예제의 원통형 플럭스 배플 번호 3을 통한 순 부피 흐름(m³/s) 및 순 유압 에너지 흐름(W)

그림 11은 그림 10의 순 부피와 에너지 플럭스의 시간 통합을 나타낸다. 시간 통합은 부피(m³)와 에너지(J)의 값을 산출한다. 볼륨 시계열은 정권이 정지해 있는 시간 간격을 선택할 수 있고, 순 볼륨 변화가 0에 가까워지도록 통합 시간 경계를 선택할 수 있다. 에너지 시계열은 에너지 소산의 예상대로 정기적으로 하향 추세를 보여준다. W/s 단위의 추세의 기울기는 소산율을 추정한다. 그런 다음 원통형 배플 인클로저 베이스의 표면적 영역으로 나누어 면적 단위당 원하는 산란율을 얻을 수 있다. 실린더의 반지름을 선택하여 면적이 100m²에 가까울 수 있도록 했다. 이 경우 소산율이 286kW/m²로 나타났다.

그림 11. 원통형 배플의 부피와 총 에너지는 시간 통합에 의해 얻어진 시간의 함수로써, 임의의 값으로 상쇄되어 영값이 단순히 존재하는 초기 수량이며 알 수 없다.
그림 11. 원통형 배플의 부피와 총 에너지는 시간 통합에 의해 얻어진 시간의 함수로써, 임의의 값으로 상쇄되어 영값이 단순히 존재하는 초기 수량이며 알 수 없다.

이러한 결과는 다른 분야의 엔지니어들과의 토론에서 사용되었다. 다른 요인 중에서도 암석 표면이 예비 추정에서 비롯된 공기 주입식 개미가 아니었기 때문에 불확실성의 여백이 크다는 것이 명백해졌다. 또한 수압 에너지가 바위가 아닌 물 속에서 소멸되고, 최대 소산의 위치가 반드시 바위에 대한 최대 작용의 위치가 아니라는 것도 모듈러에 의해 지적되었다. 위에 제시된 분석의 미니어처는 상당한 부담이었지만, 배플이 모델러에게 참신한 방법으로 사용되고 있기 때문에 필요하다고 여겨졌다. 학문 간 논의와 값의 규모 순서는 수치 그 자체보다는 모형의 가장 유용한 결과였다.

결론

FLOW-3D의 플럭스 배플은 이를 통과하는 부피와 유압 에너지 순 흐름에 대한 정밀한 평가를 제공한다. 이들의 연산 알고리즘은 제어 볼륨 접근방식과 함께 사용되는 FLOW-3D의 기본 수치 체계로 정교하게 조정되며, 높은 수준의 일관성이 요구되는 상황에서 대량 보존에 관한 FLOW-3D 자체의 성능 검증을 포함한 수많은 측정을 위해 잘 설계되어 있다.

토탈 유압 헤드의 연산은 수많은 방법으로 이루어질 수 있는데, 토목 및 유압 엔지니어에게 수량의 매우 높은 유용성을 볼 때 놀라운 일이 아니다. FLOW-3D가 제공하는 방법 중 하나는 플럭스 평균 총 유압 헤드의 배플 유량 면적에 대한 계산이다. 여기에서 주어진 유량관을 가로지르는 두 플럭스 배플에서의 값 사이의 차이로 측정한 유량에서의 수압 에너지 손실률은 가우스 발산 정리에 의해 원시 유량 변수와 연결된 제어 볼륨 접근법으로 계산될 수 있는 유량 손실률이 정확히 여기에 나타난다.

논문자료 알아보기

연료 탱크 슬로싱

시뮬레이션 사례 설명

이 예는 제트 전투기 연료 탱크 내 연료 슬로싱을 나타냅니다. 이 시뮬레이션을 통해 엔지니어는 탱크 내 연료 모션을 제어하는 배플의 성능을 평가하고 적절한 제어 시스템을 설계할 수 있습니다.

자세한 내용이 궁금하시면 언제든지 기술지원팀에 연락주시기 바랍니다.

This example represents fuel sloshing in a jet fighter fuel tank. The simulation allows engineers to evaluate the performance of the baffles in controlling the fuel motion in the tank and to design appropriate control systems.

Fuel Tank Sloshing

바람이 개방형 철광석 골재 저장소에 미치는 영향 분석 (비산먼지 배출 방지 연구)

다양한 구성에 대한 비산 먼지 배출

이 기사는 Dhananjay Sharma, EI, CFM, 유압 모델링 엔지니어, AECOM 에 의해 기고되었습니다  .

바람이 개방형 골재 저장소에 미치는 영향은 전 세계적으로 환경 문제가 되고 있습니다. 2.7km2 철골 저장소 부지에서 이런 문제가 관찰되었습니다. 이 시설은 철도 운송차량를 통해 광석을 공급받는데, 이 운송차량은 자동 덤프에 의해 비워집니다. 그런 다음 이 광석은 일련의 컨베이어와 이송 지점을 통과하여 저장 장소중 하나로 운송됩니다. 비산먼지 배출은 풍력이 비축된량에 미치는 영향의 결과로 관찰된 결과입니다.

두 가지 다른 구성(옵션 A와 B)을 FLOW-3D로 모델링하여 비산먼지 배출의 영향을 연구했습니다. 옵션 A에는 4줄에 9개 더미가 있는 36개의 비축량이 있고 옵션 B에는 1줄에 총 16개의 비축량이 있습니다.

또한 장벽이 있는 공기와 장벽이 없는 공기의 속도를 비교하기 위해 비축물 주변을 따라 30미터 높이의 장벽을 모델링할 수도 있습니다. 10m 높이에서 기준 초속 7.5m(m/s)의 풍속이 두 구성을 모두 모델링하는데 사용되었습니다. 비축 옵션 A와 B에 대해 네 가지 풍향 방향이 분석되었습니다.

물리적 및 수치 적 모델링

초기 모델 설정

FLOW-3D 에서 비산 먼지 배출을 모델링하기  위해, 공기 온도는 15 ° C로 가정되었습니다. 단일의 균일한 비압축성 유체 옵션이 선택되었습니다. z 방향에서 -9.81 m / s의 중력이 사용되었습니다. 유체는 점성과 난류로 간주되었습니다. 2- 방정식 (ke) 모델은 옵션 A 및 B 구성 모두에 대해 표면 마찰없이 난류를 계산하는데 사용되었습니다.

초기 조건

1/7 power 법칙 (pproximately a logrithmic law-of-the-wall distribution)에 기반한 속도 프로파일이 각 시뮬레이션에 대한 초기 조건으로 지정되었습니다. 비축 분석에서 가장 관심있는 기준 속도는 12 및 7.5m / s입니다. 풍속을 증가시키고 파일에 인접한 속도에 미치는 영향을 측정하여 분석을 수행했으며, 레이놀즈 스케일링이 이러한 속도에 대해 유지된다는 것을 확인했습니다 (즉, 들어오는 풍속 스케일링과 파일에 인접한 속도 스케일링 간의 선형 관계).   그런 다음 7.5m / s의 속도 만 사용하여 FLOW-3D 시뮬레이션을 구성했습니다. 이러한 시뮬레이션의 결과는 12m / s 조건을 충족하도록 확장 할 수 있습니다.

풍력 프로파일 power 법칙을 사용하여 10m에서 7.5m / s 이상 및 이하의 다양한 높이에 대한 속도를 추정했습니다. 경계에서 속도를 적용하는 이 방법은 경계를 따라 지형 변화를 허용하지 않습니다. 기준 속도는 서쪽, 남서부 및 남풍 방향에 대해 해발 10 미터에서 할당되었습니다. 동풍의 경우, 속도는 뒤쪽 (Y- 최대) 경계에서 경사 10 미터 위의 기준 높이에 할당되었습니다.

풍력 프로파일 power 법칙은 z 방향으로 최대 360m까지 모든 미터에서 계산되었습니다. 속도는 메쉬 크기와 동일한 간격으로 평균화되었습니다. 속도가 할당된 높이 간격은 2, 4, 6, 8, 10, 20, 70, 181, 270 및 360 미터입니다. 속도 프로파일을 설정 한 후 각 높이 간격에 대한 값은 네 가지 풍향 (서쪽, 남서쪽, 남쪽 및 동쪽) 각각에 대해 X 및 Y 구성 요소로 세분화되었습니다. 초기 조건은 메쉬 블록의 외부면에 할당되어 비축에 도달하기 전에 속도 프로파일이 개발 될 수있는 충분한 수평 공간을 남겼습니다.

풍력 프로필 power 법칙은 다음과 같습니다.

\ displaystyle {{u} _ {x}} = {{u} _ {r}} {{\ left ({\ frac {{{{z} _ {x}}}} {{{{z} _ { r}}}}} \ right)} ^ {\ propto}}, 여기서

U x  = 높이에서의 풍속 x
U r  = 기준 높이에서의 풍속
Z x  = 높이 x
Z r  = 기준 높이
α = 1/7 ‐ 대기 안정성 계수

지형

3 개의 지형파일인 스테레오리소그래피 (STL) 파일이 생성되어 모델에 통합되었습니다. 개별 파일은 지형, 창고 및 기둥에 해당합니다. 옵션 A와 B에 대해 다른 STL 파일이 생성되었습니다.

메싱

모델 도메인은 각 풍향에 대해 조정되었습니다. 메쉬 크기는 옵션 A의 경우 240 만에서 330 만 셀, 옵션 B의 경우 130 만 셀입니다. 정확하게 기둥 근처에 높이 2m, 길이 4m, 너비 4m의 셀 크기를 사용했습니다. 해당 지역의 속도를 계산합니다.

경계 조건

비축 시뮬레이션에는 네 가지 경계 유형이 사용되었습니다. 모든 풍향에 대해 상단 경계 (Z-max)가 정체 압력으로 지정되었습니다. 바람의 방향에 따라 두 개의 측벽이 유출 경계 조건으로 지정되었습니다. 나머지 두 측벽에는 그리드 오버레이 경계가 지정되었습니다. 그리드 오버레이를 사용하면 초기 조건의 속도를 모델에 입력 할 수 있습니다. 중첩 된 블록을 사용하여 원하는 메시 해상도와 배율을 만들었습니다. 내포된 블록 사이의 경계면에서 대칭 경계 조건이 사용되었습니다. 대칭을 사용하면 블록간에 정보를 전송할 수 있습니다. 그림 1은 서쪽 풍향 (y 방향)에 대한 경계 조건 설정을 보여줍니다. 다른 풍향의 경우 경계 조건을 적용하는 데 유사한 방법이 사용되었습니다.

경계 조건 서쪽 풍향
그림 1. 서쪽 풍향의 경계 조건

장벽

FLOW-3D 의 배플 기능은 비축된 곳의 주변에 바람 장벽을 만드는데 사용되었습니다. 옵션 A와 B의 배플은 높이가 30 미터였으며 지형을 따라 여러 부분으로 구성되었습니다. 모델링된 장벽은 본질적으로 다공성입니다. 34 %의 다공성 값 (즉, 34 % 개방 면적) 및 해당 속도 대 압력 강하 값은 장벽 제조업체에서 얻었습니다. FLOW-3D의  모델과 연관된 흐름 다공성 손실이 지정될 수있는 배플 알고리즘을 사용합니다. 배플은 무한히 얇고 부피를 차지하지 않습니다.

시뮬레이션 결과

옵션 A

옵션 A의 경우 풍속 7.5m / s에 대한 장벽이 있거나없는 4 가지 풍향을 분석하고 시뮬레이션했습니다.

바람의 방향배리어없는 최대 속도 (m / s)배리어가있는 최대 속도 (m / s)최대 속도 감소
서부13.58611.27817 %
남서부13.04510.79617 %
남쪽12.35212.122 %
동쪽9.768.59712 %

각 시뮬레이션의 최대 속도와 장벽과 장벽이 없는 경우 사이의 최대 속도 감소는 위의 표 1에 나와 있습니다. 장벽은 남풍의 최대 속도에 가장 적은 영향을 미칩니다. 옵션 A에 대한 장벽 추가로 최대 속도가 2 % 감소했습니다. 장벽은 서풍 또는 남서풍이있는 전체 파일 케이스의 속도에 가장 큰 영향을 미쳤습니다. 최대 속도는 서풍과 남서풍 모두에서 17 % 감소했습니다.

옵션 B

옵션 B의 경우 풍속 7.5m / s에 대한 장벽이 있거나없는 네 가지 풍향을 분석하고 시뮬레이션했습니다.

그림 2. 옵션 A : 장벽이없는 서풍의 비축량에서 계산 된 속도 크기
장벽이있는 속도 크기 서풍
그림 3. 옵션 A : 장벽이있는 서풍 방향의 비축에서 계산 된 속도 크기
바람의 방향배리어없는 최대 속도 (m / s)배리어 포함 최대 속도 (m / s)최대 속도 감소
서부15.9711.3629 %
남서부15.149.2139 %
남쪽13.410.124 %
동쪽12.787.1544 %
그림 4. 옵션 B. 장벽이없는 동풍의 비축량에서 계산 된 속도 크기
그림 5. 옵션 B : 장벽이있는 동풍의 비축에서 계산 된 속도 크기

결론

모델 결과는 비축물 주변에 장벽을 추가하는 것이 속도를 줄이고 비산먼지 배출을 방지하는데 도움이 된다는 것을 분명히 보여주었습니다. 현장 주변의 장벽 추가와 관련된 비용이 있지만, 이 옵션은 먼지 배출량을 줄임으로써 환경 규범을 달성하는 데 도움이 될 것입니다. 모델 결과를 보면 FLOW-3D가 비산먼지 방출을 연구하기 위한 정확하고 신뢰할 수 있는 도구로 사용될 수 있다는 것이 분명합니다. 추가 설계 변경과 철골 배치의 새로운 옵션이 제안될 경우 FLOW-3D에서 쉽게 모델링하여 비용 및 환경적으로 효과적인 최적의 구성을 결정할 수 있습니다.

FLOW-3D 튜토리얼 V12

FLOW-3D 튜토리얼 V12

빠른 시작

이 튜토리얼 매뉴얼은 FLOW-3D 처음 사용하는 사용자에게 그래픽 사용자 인터페이스(GUI)의 주요 구성 요소를 쉽게 익히도록 하고, 다양한 시뮬레이션의 설정 및 실행 방법을 안내하기 위한 것입니다.

이 매뉴얼에 있는 실습과정은 FLOW-3D의 기본 사항을 다루기 위한 것입니다. 이 매뉴얼에서 제시하는 문제는 다양한 주제를 설명하고, 발생할 수 있는 많은 질문을 해결하기 위해 선정되었습니다. 이 매뉴얼의 실습과정은 FLOW-3D실행하는 컴퓨터에 앉아 사용하는 것이 가장 좋습니다.

CFD 사용 철학에 대한 간단한 섹션 다음에는 중요 파일과 시뮬레이션 파일을 실행하는 방법이 소개되어 있습니다. 이 소개 섹션 다음에는 모델 설정, 시뮬레이션 실행 및 포스트 프로세스, Simulation Manager 탐색 방법에 대한 설명이 있습니다. 이러한 각 단계에 대한 자세한 내용은 모델 설정, 컴퓨팅 결과 및 후처리 장에서 확인할 수 있습니다.

1.CFD 사용에 대한 철학

CFD (Computational Fluid Dynamics)는 유체 흐름(질량, 운동량 및 에너지 보존)에 대한 지배 방정식의 컴퓨터 솔루션입니다. 지정된 지배방정식은 이론 장에 설명된 Numerical방법을 사용하여 이산화되고 계산됩니다.

CFD 소프트웨어를 사용하는 것은 여러 면에서 실험을 설정하는 것과 유사합니다. 실제 상황을 시뮬레이션하기 위해 실험을 올바르게 설정하지 않으면, 그 결과는 실제 상황을 반영하지 않습니다. 같은 방법으로 수치 모델이 실제 상황을 정확하게 나타내지 않으면, 그 결과는 실제 상황을 반영하지 않습니다. 사용자는 어떤 것이 중요한지, 어떻게 표현해야 하는지를 결정해야 합니다. 시작하기 전에 다음과 같은 질문을 하는 것이 중요합니다.

  • CFD 계산에서 무엇을 알고 싶습니까?
  • 중요한 현상을 포착하기 위해 규모와 Mesh는 어떻게 설계되어야 하는가?
  • 실제 물리적 상황을 가장 잘 나타내는 경계 조건은 무엇입니까?
  • 어떤 종류의 유체를 사용해야합니까?
  • 이 문제에 어떤 유체 특성이 중요합니까?
  • 다른 어떤 물리적 현상이 중요합니까?
  • 초기 유체 상태는 어떻게 됩니까?
  • 어떤 단위 시스템을 사용해야합니까?

모델링 되는 문제가 실제 상황을 가능한 한 유사하게 나타내는지 확인하는 것이 중요합니다. 사용자는 복잡한 시뮬레이션 작업을 해결 가능한 부분으로 나누는 것이 좋습니다.

복잡한 물리 효과를 추가하기 전에, 간단하고 쉽게 이해할 수 있는 근사값으로 점차적으로 시작하여 프로세스 진행하십시오. 간단한 손 계산(베르누이 방정식, 에너지 균형, 파동
전파, 경계층 성장 등)은 물리 및 매개 변수를 선택하는데 도움이 되고, 결과와 비교할 수 있는 점검항목을 제공합니다.

CFD의 장단점을 이해하면 분석을 진행하는데 도움이 될 수 있습니다. CFD는 다음과 같은 경우 탁월한 분석 옵션입니다.

  • 기하 구조, 물리학 또는 필요한 상세 수준으로 인해 표준 엔지니어링 계산이 유용하지 않은 경우가 많습니다.
  • 실제 실험은 비용이 많이 소요됩니다.
  • 실험에서 수집할 수 있는 것보다 유체흐름에 대한 자세한 정보가 필요한 경우 유용합니다.
  • 위험하거나 적대적인 조건, 확장이 잘되지 않는 프로세스 등으로 인해 정확한 실험 측정을 하기가 어려운 경우
  • 복잡한 흐름 정보에 대한 커뮤니케이션

CFD는 다음과 같은 경우에 덜 효과적입니다.

  • 솔루션이 계산 리소스가 매우 많이 소요되거나, 도메인 크기를 줄이기 위한 가정 또는 해결되지 않은 물리적 현상을 설명하기 위한 반 임계 모델이 필요한 경우
  • CFD 시뮬레이션에 대한 입력이 되는 중요한 물리적 현상이 알려지지 않은 경우
  • 물리적 현상이 잘 이해되지 않거나 매우 복잡한 경우

CFD를 사용할 때 명심해야 할 몇 가지 중요한 참고 사항이 있습니다.

  • CFD는 규정된 초기 및 경계 조건에 따라 지정된 지배 방정식의 수치해석 솔루션입니다. 따라서 모델 설정, 즉 어떤 방정식을 풀어야 하는지, 재료 특성, 초기 조건 및 경계 조건이, 가능한 한 물리적 상황과 최대한 일치해야 합니다.
  • 방정식의 수치 해는 일반적으로 어떤 종류의 근사치를 필요로 합니다. 물리적 모델에 대한 가정과 해결방법을 검토한 후 사용하는 것이 좋습니다.
  • 디지털 컴퓨터는 숫자가 유한 정밀도로 이진수로 표시되는 방식으로 인해 반올림 오류가 발생합니다. 이는 문제를 악화시키기 때문에 매우 근소한 숫자의 차이를 계산해야 하는 상황을 피하십시오. 이러한 상황의 예는 시뮬레이션 도메인이 원점에서 멀리 떨어져 있을 때입니다.

 

2.중요한 파일

FLOW-3D 시뮬레이션과 관련된 많은 파일이 있습니다. 가장 중요한 것들이 아래에 설명되어 있습니다. 모든 prepin.* 파일의 명칭에서 prepin는 파일 형식을 의미하며, 별표시* 위치는 시뮬레이션 이름을 의미합니다. ( : prepin.example_simulation.)

  • ·prepin.*: 시뮬레이션용 입력 파일입니다. 시뮬레이션 설정을 설명하는 모든 입력 변수가 포함되어 있습니다.
  • ·prpgrf.*: 이것은 전 처리기 출력 파일입니다. 여기에는 계산된 초기 조건이 포함되며 시뮬레이션을 실행하기 전에 설정을 확인하는 데 사용될 수 있습니다.
  • ·flsgrf.*: 솔버 출력 파일입니다. 시뮬레이션의 최종 결과가 포함됩니다.
  • ·prperr.*, report.*, prpout.*: 이 파일들은 Preprocessor Diagnostic Files.
  • ·hd3err.*, hd3msg.*, hd3out.*: 이 파일들은 Solver Diagnostic Files.

모든 시뮬레이션 파일은 단일 폴더에 함께 유지하므로, 설명이 될 수 있는 시뮬레이션 이름을 사용하는 것이 좋습니다. 그러나 매우 긴 파일 이름은 운영 체제에 따라 문제가 될 수 있습니다.

노트

  • 시뮬레이션 이름이 inp(즉, 입력 파일이 있다면 prepin.inp) 출력 및 진단 파일은 모두 .dat이름을 갖습니다. 예: flsgrf.dat.
  • 모든 입력 파일은 네트워크 위치의 컴퓨터 대신 로컬 디렉토리에 저장하는 것이 좋습니다. 이것은 솔버가 더 빠르게 실행되고 GUI의 응답 속도가 빨라지며 실행중인 시뮬레이션을 방해하는 네트워크 문제 가능성을 제거합니다.

3.시뮬레이션 관리자

FLOW-3D 시뮬레이션 관리자의 탭은 주로 시뮬레이션을 실행할 수 있도록 시뮬레이션 환경을 구성하고 실행 시뮬레이션에 대한 상태 정보를 표시하는데 사용됩니다.

작업 공간 (Workspaces)

작업 공간(Workspaces)Simulation Manager의 필수 부분이며 파일을 FLOW-3D에서 처리하는 방식입니다. 기본적으로 시뮬레이션을 포함하고 구성하는 폴더입니다. 몇 가지 예를 들면 시뮬레이션과 또 다른 작업 공간인 검증 사례를 포함하도록 할 수 있습니다:

포트폴리오의 작업 공간

새로운 작업 공간 만들기

튜토리얼에서는 작성하려는 시뮬레이션을 포함할 작업 공간(Workspaces)을 작성하십시오.

1.File -> New workspace 이동

2.작업 공간 이름으로 Tutorial를 입력하십시오.

3.기본 위치는 현재 사용자의 홈 디렉토리에 있습니다. 다른 곳에서 찾을 수 있지만 기본 위치가 우리의 목적에 적합합니다.

4.하위 디렉토리를 사용하여 작업 공간 이름 만들기 확인란을 선택합니다. 이렇게 하면 파일 시스템에서 작업 공간에 대한 새로운 하위 디렉토리가 만들어져 시뮬레이션 파일을 훨씬 쉽게 구성할 수 있습니다.

새로운 작업 공간 만들기

5.확인을 눌러 새 작업 공간을 작성하십시오. 이제 포트폴리오에 표시됩니다.

새로운 작업 공간 만들기

작업 공간 닫기

포트폴리오를 정리하고 탐색하기 쉽도록 필요 없는 작업공간을 닫는 것이 편리합니다. 작업 공간을 닫으면 포트폴리오에서 해당 작업 공간만 제거됩니다. 그러나, 컴퓨터에서 작업 공간을 삭제하지는 않습니다.

작업 공간을 닫으려면

1.기존 작업 공간을 마우스 오른쪽 버튼으로 클릭하고 작업 Close Workspace 선택하십시오. 또는 포트폴리오에서 작업 공간을 선택 (왼쪽 클릭) 하고 Delete 키를 누를 수 있습니다.

2.작업 공간을 닫을 것인지 묻는 메세지가 표시됩니다. 예를 선택하십시오.

3.포트폴리오는 더 이상 닫힌 작업 공간을 포함하지 않습니다.

기존 작업 공간 열기

오래된 작업 공간을 열어야 할 때가 있을 것입니다. 예를 들어, 새 프로젝트에 유사한 시뮬레이션을 작성하기 전에 기존 시뮬레이션의 설정을 검토할 수 있습니다. 기존 작업 공간을 열려면

1.File -> Open Workspace를 선택하십시오

2.작업 공간 파일이 있는 디렉토리를 찾으십시오. Tutorial.FLOW-3D_Workspace.

작업 공간 열기

3.작업 공간을 로드 하려면 OK누르십시오.

작업 공간에서 시뮬레이션 작업

작업 공간을 사용하는 방법을 알았으니, 여기에 시뮬레이션을 추가해 봅시다.

Example를 추가하십시오

작업 공간에 작업 시뮬레이션을 추가하는 가장 간단한 방법은 포함된 예제 시뮬레이션 중 하나를 추가하는 것입니다. FLOW-3D의 다양한 기능을 사용하는
방법을 보여주기 위해 설계된 간단하고 빠른 시뮬레이션입니다. 기존 작업 공간에 예제를 추가하려면 다음을 수행하십시오.

1.포트폴리오에서 원하는 작업 공간을 강조 표시하십시오

2.File -> Add example 선택하십시오. 또는 작업공간을 마우스 오른쪽 버튼으로 클릭하고 예제 추가선택할 수 있습니다.

3.예제 대화 상자에서 예제를 선택하고 열기를 누르십시오. 자연 대류(Natural Convection) 예제를 선택했습니다.

시뮬레이션 예제 추가

4.새 시뮬레이션 대화 상자가 열립니다.

5.디렉토리가 작업 공간 위치에 있는지 확인하는 것이 좋으므로 기본 시뮬레이션 이름과 위치를 잘 확인하는 것이 좋습니다. FLOW-3D는 모든 시뮬레이션 파일을 이 작업 공간 디렉토리의 별도 하위 디렉토리에 배치하여 파일 구성을 쉽게 만들어 줍니다.

6.시뮬레이션을 위한 단위 시스템을 선택하십시오. 표준 단위 시스템이 권장되지만 각 단위를 독립적으로 선택하기 위해 사용자 지정 단위 시스템을 선택할 수 있습니다.

7.확인을 눌러 새 시뮬레이션을 작업 공간에 추가하십시오.

작업 공간에서의 시뮬레이션

작업 공간에서 시뮬레이션 제거

작업 공간에서 시뮬레이션을 제거해야 하는 경우가 있습니다 (이는 작업 공간에서 시뮬레이션을 제거만 하며, 컴퓨터에서 시뮬레이션을 삭제하지는 않습니다). 작업 공간에서 시뮬레이션을 제거하려면 다음을 수행하십시오.

1.작업 공간에서 기존 시뮬레이션을 마우스 오른쪽 버튼으로 클릭하고 (이 경우 이전 섹션에서 추가 한 예제 사용) 시뮬레이션 제거를 선택하십시오. 또는 작업 공간에서 시뮬레이션을 선택 (왼쪽 클릭)하고 Delete 키를 누를 수 있습니다.

2.작업 공간에는 더 이상 시뮬레이션이 포함되지 않습니다.

모든 작업 공간 및 디스크에서 시뮬레이션 삭제

작업 공간에서 시뮬레이션을 제거하는 것 외에도 디스크에서 모든 시뮬레이션 파일을 삭제해야 할 수도 있습니다. 작업 공간에서 시뮬레이션을 제거하고 디스크에서 시뮬레이션
파일을 삭제하려면 다음을 수행하십시오.

1.작업 공간에서 기존 시뮬레이션을 마우스 오른쪽 단추로 클릭하고 (이 경우 이전 섹션에서 추가 한 예제 사용) 모든 작업 공간 및 디스크에서 시뮬레이션
삭제를
선택하십시오.

2.시뮬레이션 디렉토리에서 삭제할 파일을 선택할 수 있는 창이 나타납니다. 삭제할 파일을 선택한 다음 확인을 눌러 해당 파일을 삭제하거나 취소를 눌러 작업을 중단하십시오.

3.OK를 선택한 경우 선택한 작업 공간은 더 이상 시뮬레이션을 포함하지 않습니다. 선택한 작업 공간의 모든 시뮬레이션 파일은 디렉토리에서 삭제됩니다.

경고

이 작업은 취소할 수 없으므로 계속하기 확인 후 파일을 삭제해야 합니다.

작업 공간에 기존 시뮬레이션 추가

기존 시뮬레이션을 작업 공간에 추가하려면 다음을 수행하십시오.

1.열린 작업 공간을 마우스 오른쪽 버튼으로 클릭하고 기존 시뮬레이션 추가 선택합니다. 작업 공간을 선택한 다음 File->Add Existing Simulation 을 선택할 수도 있습니다.

2.prepin.*파일 위치로 이동하여 열기를 선택하십시오.

작업 공간에 기존 시뮬레이션 추가

3.시뮬레이션이 이제 작업 공간에 나타납니다.

작업 공간에 새로운 시뮬레이션 추가

대부분의 경우 기존 시뮬레이션을 사용하는 대신 새 시뮬레이션을 작성하게 됩니다. 작업 공간에 새로운 시뮬레이션을 추가하려면:

1.기존 작업 공간을 마우스 오른쪽 버튼으로 클릭하고 새 시뮬레이션 추가 선택하십시오.

2.시뮬레이션 이름을 입력하라는 message가 표시됩니다. 이 예제에서는 heat transfer example 불러오십시오.

3.그런 다음 드롭다운 목록을 사용하여 시뮬레이션을 위한 단위 시스템을 결정합니다. 사용 가능한 옵션은 질량, 길이, 시간, 전기요금
각각 g, cm, s, coul기준의 Kg, m, s, CGS입니다. 또한 엔지니어링 단위도 사용할 수 있으며, slug, ft, s의 기초 단위가 있지만, 전기
충전을 위한 단위는 없습니다. 이러한 옵션 중 어느 것도 해당되지 않는 경우, 질량, 길이, 시간 및 전기요금에 대한 기준 등을 사용자 정의하여 사용자 지정 단위 시스템을 사용할 수 있습니다.

4.온도 단위는 드롭다운 목록을 사용하여 지정해야 합니다. 사용 가능한 옵션은 SI CGS 단위의 경우 Celsius
Kelvin, 엔지니어링 단위의 경우 Fahrenheit Rankine입니다. Custom units(사용자 정의 단위) 옵션을 선택한 경우, 사용 가능한 온도 단위는 질량
및 길이에 대해 선택한 기본 단위에 따라 변경됩니다.

노트

새 시뮬레이션의 시뮬레이션 단위는 신중하게 선택하십시오. 일단 설정하면 단위를 변경할 수 없습니다.

5.이 시뮬레이션에 사용된 템플릿이 기본 템플릿이 됩니다. 템플릿은 포함된 설정을 새 시뮬레이션에 적용하는 저장된 값 세트입니다. 다른 템플릿을 사용해야하는 경우
찾아보기 아이콘 (
browse_icon_v12)을 클릭하여 사용 가능한 템플릿 목록에서 선택하십시오.

6.기본 시뮬레이션 이름과 위치는 디렉토리가 작업 공간 위치에 있는지 확인하는 것이 좋습니다. FLOW-3D는 모든 시뮬레이션 파일을 이 작업 공간 디렉토리의 별도 하위 디렉토리에 배치하여 파일 구성을 훨씬 쉽게 만듭니다. 시뮬레이션을 다른 위치에 저장하려면 찾아보기 아이콘 ( browse_icon_v12)을 사용하여 원하는 위치로 이동하십시오.

7.확인을 클릭하여 작업 공간에 새 시뮬레이션을 추가하십시오.

heat transfer example

새로운 시뮬레이션 추가

다른 옵션

우리는 지금 이러한 옵션을 사용하지 않는 동안, 이 시뮬레이션을 마우스 오른쪽 버튼으로 클릭하여 추가 옵션에 대한 액세스를 제공합니다.

일반적으로 사용되는 Add Simulation Copy… 그리고 Add Restart Simulation…을 추가합니다. 첫 번째 옵션은 기존 시뮬레이션의 사본을
작성하고, 두 번째 옵션은 기존 시뮬레이션을 복사하고 원래 시뮬레이션의 결과를 다시 시작 시뮬레이션의 초기 조건으로 사용하도록 다시 시작 옵션을 구성합니다.

추가 정보

재시작 시뮬레이션에 대한 자세한 내용은 도움말에서 모델 설정 장의 재시작 섹션을 참조하십시오.

전처리 및 시뮬레이션 실행

시뮬레이션 전처리

시뮬레이션 전처리는 초기 조건을 계산하고 입력 파일에서 일부 진단 테스트를 실행합니다. 문제가 올바르게 구성되었는지 확인하거나 전 처리기의 진단 정보가 필요한 경우에
유용합니다. 시뮬레이션을 실행하기 전에 전처리할 필요가 없습니다. 시뮬레이션을 전처리 하려면

1.작업 공간에서 시뮬레이션을 마우스 오른쪽 버튼으로 클릭하고 Preprocess Simulation->Local 선택합니다. 이 경우 입력 파일 heat transfer example이 아직 완전히 정의되지 않았으므로 작업 공간에서 예제 문제를 선택하십시오.

2.전처리 프로세스가 시작되고 Simulation Manager 하단의 텍스트 창에 일부 정보가 인쇄된 후 성공적으로 완료됩니다. 포트폴리오에서 시뮬레이션 이름 옆의 아이콘도 시뮬레이션이 성공적으로 처리되었음을 나타내도록 변경됩니다.

추가 정보

자세한 내용은 도움말의 컴퓨팅 결과 장의 전처리 섹션을 참조하십시오.

시뮬레이션 실행

시뮬레이션을 실행하면 입력 파일에 정의된 문제에 대한 지배 방정식(물리적 모델, 형상, 초기 조건, 경계 조건 등)이 해석됩니다. 시뮬레이션을 실행하려면

1.작업 공간에서 시뮬레이션을 마우스 오른쪽 버튼으로 클릭하고 Run Simulation->Local을 선택하십시오. 이 경우 입력 파일 heat transfer example이 아직 완전히
정의되지 않았으므로 작업 공간에서 예제 문제를 선택하십시오.

2.솔버가 시작되고 시뮬레이션 관리자 하단의 텍스트 창에 일부 정보가 인쇄되고 플롯이 업데이트 된 후 성공적으로 완료됩니다. 포트폴리오에서 시뮬레이션 이름 옆의
아이콘도 시뮬레이션이 성공적으로 실행되었음을 나타내도록 변경됩니다. 또한 솔버가 실행되는 동안 큐에 시뮬레이션이 나타나는 것을 볼 수 있으며, 완료되면 사라집니다
.

추가 정보

시뮬레이션 실행 및 진단 읽기에 대한 자세한 내용은 도움말의 컴퓨팅 결과 장에서 솔버 실행 섹션을 참조하십시오.

작업 공간에서 모든 시뮬레이션 실행

작업 공간을 마우스 오른쪽 버튼으로 클릭하고 Simulate Workspace->Local을 선택하여 작업 공간에서 모든 시뮬레이션을 실행할 수도 있습니다.

추가 정보

자세한 내용은 컴퓨팅 결과 장에서 솔버 실행 섹션을 참조하십시오.

대기열

사전 처리 또는 실행에 작업이 제출되면 큐의 맨 아래에 시뮬레이션이 자동으로 추가됩니다. 그런 다음 솔버에 사용 가능한 라이센스 및 계산 리소스가 있으면 시뮬레이션이 사전 처리되거나 실행됩니다. 대기열에 있지만 아직 전처리 또는 실행되지 않은 시뮬레이션은 대기열 맨 아래의 컨트롤을 사용하여 대기열에서 다시 정렬하거나 대기열에서 제거할 수 있습니다.

추가 정보

자세한 내용은 컴퓨팅 결과 장을 참조하십시오.

파일 시스템에서 파일 찾기

어떤 이유로 구조물 파일에 액세스해야 하는 경우 (아마 *.STL 폴더에 파일을 배치해야 함) 표시된 파일 경로를 시뮬레이션 입력 파일로 클릭하여 파일 시스템의 해당 위치로 이동할 수 있습니다.

파일 링크

4.모델 설정

Model Setup(모델 설정) 탭은 시뮬레이션 관리자에서 현재 선택한 시뮬레이션에 대한 입력 매개 변수를 정의하는 곳입니다. 여기에는 전역설정, 물리학 모델, 유체,
기하학, 메싱, 구성요소 특성, 초기 조건, 경계 조건, 출력 옵션 및 숫자가 포함된다.

이 섹션은 물에 잠긴 모래(; 파랑)의 바닥에서 가열된 구리 블록(; 빨간색)에 의해 발생하는 열 기둥(아래)을 보여주는 간단한 시뮬레이션 설정 방법을 안내합니다.

예제 문제

이 튜토리얼은 방법이나 모델이 어떻게 작동하는지, 옵션을 선택한 이유 등에 대한 포괄적인 논의를 의도한 것이 아니며, 이 특정 시뮬레이션을 설정하기 위해 수행해야 할 사항에
대한 간략한 개요일 뿐입니다. 여기서 행해지는 것에 대한 방법/모델과 추론의 세부사항은 사용 설명서의 다른 장에서 확인할 수 있습니다.

시작하려면 새 작업 공간을 작성하고 새 시뮬레이션을 추가하십시오. 이를 수행하는 방법에 대한 지침은 새 작업 공간 작성 및 작업 공간에 새 시뮬레이션 추가를 참조하십시오.

탐색

모델 설정은 주로 빨간색으로 표시된 처음 9 개의 아이콘의 탐색을 통해 수행됩니다. 각 아이콘은 시뮬레이션의 특정 측면을 구성하기 위한 위젯을 엽니다. Global에서 시작하여 Numerics로 끝나는 다음 섹션은 각 위젯의 목적을 보여줍니다.

시뮬레이션의 다양한 측면을 정의하기위한 탐색 아이콘

통제 수단

다음은 FLOW-3D 사용자 인터페이스의 그래픽 디스플레이 영역에서 사용되는 마우스 컨트롤입니다.

행동

버튼/

동작

기술

회전

왼쪽

길게 클릭

마우스 왼쪽 버튼을 클릭 한 채로 Meshing & Geometry 창에서
마우스를 움직입니다. 그에 따라 모델이 회전합니다.

중간 버튼/스크롤

스크롤/클릭 한
상태

마우스를 앞뒤로 움직여 확대/축소하려면 가운데 휠을 굴리거나 마우스 가운데 버튼을 클릭
한 상태로 유지하십시오.

우측

길게 클릭

마우스 오른쪽 버튼을 클릭 한 채로 창에서 마우스를 움직입니다. 모델이 마우스와 함께 움직입니다.

객체에 초점 설정

해당 없음

객체 위에 커서를 놓기

커서를 개체 위로 가져 가면 마우스 오른쪽 버튼 클릭 메뉴를
통해 추가 조작을 위해 개체가 활성화됩니다. 개체가 활성화되면 강조 표시됩니다. Meshing & Geometry 탭에서 Tools->
Mouse Hover
Selection
환경 설정 이 활성화된 경우에만
수행됩니다.

선택

왼쪽

더블 클릭

객체를 두 번 클릭하면 마우스 오른쪽 버튼 메뉴를 통해 추가
조작을 위해 객체를 선택하고 활성화합니다. Meshing
& Geometry
탭에서 Tools
->Mouse Hover Selection 환경 설정 이
비활성화 된 경우에만 활성화됩니다.

액세스 객체 속성

우측

딸깍 하는 소리

강조 표시된 객체를 마우스 오른쪽 버튼으로 클릭하면 객체
식별, 표시/숨기기, 활성화/비활성화, 투명도 조정 등의 옵션 목록이 표시됩니다.

커서 좌표 반환 (프로브)

왼쪽

Shift + 클릭

Shift 키를 누르면 커서가 대상으로 바뀝니다. Shift 키를 누른 상태에서 클릭하면 화면의 왼쪽 하단에 표시된 표면의 좌표가 표시됩니다.

피벗 점 배치

왼쪽

cntrl + 클릭

Ctrl 키를 누르고 있으면 커서가 피벗 아이콘으로 바뀝니다. Ctrl 키를 누른 상태에서 클릭하여 피벗 점을 설정하십시오. 뷰가
피벗 점을 중심으로 회전합니다. 토글 사용자 정의 피벗 피벗 점을 끕니다.
보기 창 위의 버튼을 누릅니다.

도움이
되는 툴바 옵션도 있습니다. 옵션의 목적을 찾으려면 아이콘 위로 마우스를 가져갑니다.

메시 및 지오메트리 탭의 컨트롤

글로벌

이 매뉴얼에 대한 시뮬레이션을 만들려면 원하는 작업 공간을 마우스 오른쪽 단추로 클릭하고 새 시뮬레이션 추가를 선택하십시오. 매뉴얼 섹션의 새 시뮬레이션 추가 작업 공간에 설명된 대로 이름을 ‘heat transfer example’로 지정하고 작업 공간에 추가하십시오. SI Kelvin을 각각 단위 시스템과 온도로 선택합니다. 일단 설정되면
시뮬레이션을 위한 단위는 변경할 수 없다는 점을 기억하십시오.

글로벌 아이콘 f3d_global_icon을 클릭하여 글로벌 위젯을 여십시오. 여기에서 정의된 단위가 표시되고 시뮬레이션 완료 시간이 설정됩니다. 이 시뮬레이션의 경우 완료 시간을 200 초로 설정하십시오. 시뮬레이션에 대한 중요한 세부 정보는 여기 노트 필드에도 추가할 수 있습니다.

글로벌 탭 예를 들어 문제

추가 정보

자세한 내용은 모델 설정 장의 전역 섹션을 참조하십시오.

물리

물리 f3d_models_icon아이콘을 클릭하여 물리 위젯을 엽니다.

모델 선택을위한 물리 위젯

이 문제의 경우, 하나의 유체, 자유 표면, 경계 및 비압축/제한 압축의 기본 설정이 모두 정확합니다.

관련 물리 메커니즘(, 추가 지배 방정식 또는 지배 방정식 용어)은 물리 위젯에서 정의됩니다. 모델을 활성화하려면 해당 모델의 아이콘을 마우스 왼쪽 버튼으로 클릭하고활성화 선택하십시오. 이 시뮬레이션을 위해서는 다음 모델을 활성화해야 합니다.

·Density evaluation(밀도 평가): 이 모델은 열 기둥을 생성하는 밀도 변화를 설명합니다. 다른 양(: 온도 또는 스칼라)의 함수로 평가된 밀도를 선택하고 Include volumetric thermal expansion 상자를 선택하십시오.

문제 평가를위한 밀도 평가 모델

·Gravity and non-inertial reference frame(중력 및 비 관성 기준 프레임): 중력을 나타내는 힘이 추가되므로 Z 중력 성분에 -9.81을 입력하십시오.

예를 들어 중력 모델

·
Heat transfer(열 전달): 이 모델은 유체와 고체 물체 사이의 열 전달을 설명합니다. 이 시뮬레이션의 경우 First order for the Fluid internal Energy advection를 선택하고 Fluid to solid heat transfer를 활성화하려면 확인란을 선택하십시오. 나머지 옵션은 기본값으로 두어야합니다.

열전달 모델 예 : 문제

·
Viscosity and turbulence(점성 및 난류): 이 모델은 유체의 점성 응력을 설명합니다. Viscous flow 옵션을 선택하고 나머지 옵션은 기본값으로 두십시오.

예를 들어 문제의 점도 모델

추가 정보

자세한 내용은 모델 설정 장의 물리 섹션을 참조하십시오.

유체

유체의 속성은 모델 설정 탭의 유체 위젯에 정의되어 있습니다. 유체 위젯은 수직 도구 모음에서 Fluids f3d_fluids_icon f3d_fluids_icon아이콘을 클릭하여 액세스할 수 있습니다. 먼저 유체 옵션 1 이 속성 옵션으로 선택되어 있는지 확인하십시오. 유체 1의 속성은 수동으로 입력할 수 있지만 일반적인 유체의 속성을 설정하는 빠른 방법은 재료 속성로드 버튼Matdatbas을 클릭하여 재료 데이터베이스에서 유체를 로드하는 것입니다. 다음으로, 원하는 재료를 탐색하십시오. 이 경우 Fluids->Liquids->Water_at_20_C를 선택하고 Load를 클릭하십시오.

이 시뮬레이션에는 데이터베이스에 없는 특성인 체적 열 팽창 계수가 필요합니다. 밀도 하위 탭에서 207e-6을 입력하십시오. 최종 속성 세트는 다음과 같아야 합니다.

유체 특성 (예 : 문제)

추가 정보

자세한 내용은 모델 설정 장의 유체 섹션을 참조하십시오.

Geometry(기하)

기하형상 f3d_geometry_icon아이콘을 클릭하여 물리 위젯을 엽니다.

이 시뮬레이션을 위해 생성해야 하는 두 가지 형상은 구리 블록과 모래층이 있습니다. 둘 다 프리미티브를 사용하여 작성합니다. 보다 현실적인 시뮬레이션은 Primitives, Stereolithography(STL) Geometry File (s)/또는 Raster File (s)을 사용하여 지오메트리를 정의할 수 있습니다.

구리 블록을 만들려면 먼저 지정된 상자 형상 아이콘을 클릭하여 작성합니다. 구리 블록을 x y 방향 원점에서 +/- 2cm 연장하고 z 방향으로 0-4cm 연장합니다. 나머지 옵션은 그대로 두고 블럭을 솔리드로 만들고 새 구성 요소에 추가합니다.

예제 문제에 대한 구리 블록 정의

하위 구성 요소 정의를 마치고 구성 요소 정의로 이동하려면 확인을 선택하십시오. 자동으로 열린 구성요소 추가 대화상자에서 Type as General(솔리드)을 그대로 두고 Name(이름) 필드에 Copper block을 입력한 다음 OK(확인)를 선택하여 구성요소 정의를 완료하십시오.

상자아이콘을 다시 클릭하여 베드 하위 구성 요소를 작성하십시오. 아래 표시된 범위를 사용하고 컴포넌트에 추가 선택 사항을 새 컴포넌트(2)로 설정하십시오.

예를 들어 침대 문제 정의

하위 구성 요소 정의를 마치고 구성 요소 정의로 이동하려면 확인을 선택하십시오. 대화 형으로 이름 필드에서Bed를 입력한 후 구성요소 정의를 마칩니다. 최종 형상은 다음과 같이 표시됩니다.

예제 문제에 대한 형상 정의

새 구성 요소를 추가하면 가로 및 세로 방향으로 그래픽 표시 창에 길이 스케일이 자동으로 생성됩니다. 눈금자 도구를 사용하여 생성된 기하학적 객체의 범위를 빠르게 측정할 수 있습니다.

노트

표시 영역에는 지오메트리 모양 정의만 표시되므로 객체가 솔리드인지 구멍인지에 대한 정보는 표시되지 않습니다. 즐겨 찾기옵션을 사용하여 Mesh 후에 나중에 수행할 수 있습니다.

추가 정보

자세한 내용은 도움말 모델 설정 장의 형상 섹션을 참조하십시오.

구성 요소 속성

열전달 모델은 고체 구성 요소의 전도 방정식을 해결하기 위해 재료 특성이 필요합니다. 이러한 속성은 이 아이콘f3d_geometry_icon을 클릭하여 구성 요소 속성 위젯에서 설정합니다.

구성 요소 특성 위젯

각 구성 요소에는 솔리드 특성 및 표면 특성이 정의 되어 있어야합니다. 구리 블록에 대해 이를 설정하려면 먼저 형상 위젯에서 구성 요소 1: copper block 요소를 선택하십시오. 그런 다음 컴포넌트 특성 위젯에서 솔리드 특성을 선택하고 다음과 같이 특성을 정의하십시오.

구리 블록 고체 특성

여기에서 두 번째 구성 요소(베드)에 대해 설명된 구성 요소 특성 정의를 위한 대체 방법을 사용할 수 있습니다. 이 방법에서는 구성 요소 2: 베드 구성 요소를 클릭하고 재료 필드 옆에 있는 재료 특성로드 Matdatbas 아이콘을 선택하여 시작합니다. 다음으로 재료를 탐색합니다. 이 경우 Solids->Sands->Sand_Quartz 선택하고 Load를 선택하십시오.

베드 솔리드 속성

추가 정보

l 자세한 내용은 모델 설정 장의 유체 섹션을 참조하십시오.

l 주어진 물리적 모델에 필요한 속성에 대한 자세한 내용은 모델 참조 장을 참조하십시오.

Meshing(메싱)

Mesh Mesh 위젯에서 생성 및 정의되며, 위젯을 통해 액세스 할 수 있습니다. f3d_mesh_icon아이콘을 눌러 add_iconMesh를 추가합니다. Mesh의 범위를 형상에 빠르게 적용하려면 형상에 맞추기 라디오 버튼을 선택하고 오프셋 라디오 버튼을 백분율로 유지합니다. 블록 속성에서 셀 크기를 0.004로 설정하십시오.

메시 블록을 형상에 맞추기

Mesh 상단은 z 방향으로 위쪽으로 확장해야 합니다. Z-Direciton 탭을 선택하고 Mesh Plane 2 0.2를 입력합니다.

z 높이 조정

이 시뮬레이션은 2D가 될 것입니다. 동일한 프로세스에 따라 Y 방향 범위를 -0.005 0.005 로 설정하십시오. 그리고 합계 셀을 1로 설정하십시오.

y 메쉬 평면 조정

최종 Mesh는 그래픽 디스플레이 창 바로 위의 Mesh->Flow Mesh->View 모드 드롭 다운 메뉴에서 옵션을 변경하여 다른 방식으로 볼 수 있습니다. 그리드 라인 마다 그리드 선을 표시합니다 옵션은 Mesh Plane의 옵션만 표시됩니다 Plane Mesh 및 개요 옵션은 Mesh의 범위를 보여줍니다.

또한 솔버가 Mesh의 최종 지오메트리를 인식하는 방법은 FAVOR TM 알고리즘을 사용하여 형상 정의를 면적 분수 및 부피 분수로 변환합니다. 이렇게 하려면 즐겨 찾기아이콘을 클릭한 다음 생성을 선택하십시오.

호의

잠시 후 회색 영역이 고체 물질을 나타내는 아래와 같은 형상을 표시해야 합니다.

선호하는 결과

추가 정보

l Mesh에 대한 자세한 내용은 모델 설정 장의 Mesh 섹션을 참조하십시오.

l FAVORTM FAVORize
옵션에 대한 자세한 내용은 모델 설정 즐겨 찾기장의 Reviewing the FAVORized Geometry and Mesh 섹션을 참조하십시오.

경계 조건

FLOW-3D는 구성 요소 유형 및 활성 물리적 모델에 기초한 구성 요소에 적절한 경계 조건을 자동으로 적용합니다. 그러나 경계 조건 위젯에서 Mesh 블록면의 경계 조건은 각 Mesh 블록에 대해 수동으로 설정해야 합니다(f3d_bc_icon ).

이 매뉴얼의 경우 경계 조건 중 3 가지가 경계조건( X Min , X Max, Z Max 경계)을 기본 대칭 조건조건부터 변경해야 합니다.

·X Min :

o경계 조건 위젯의 경계 섹션 아래에 있는 X Min 목록을 클릭하십시오. Type에서 경계 유형을 Velocity로 설정하고 X 속도에 대해 0.001을 입력하십시오.

XMIN 경계 조건

·다음으로, 유체 분율 사용에서 유체 표고 사용으로 드롭다운 상자를 변경하고 유체 높이를 0.15로 설정하십시오.

·마지막으로 온도를 298K로 설정하십시오.

XMIN 경계 조건

·
X Max :

o경계 조건 위젯의 경계 섹션 아래에 있는 X 최대 목록을 클릭하십시오. 경계 유형을 압력으로 설정하고 압력에 대해 0을 입력하십시오.

o다음으로, 유체 분율 사용에서 유체 높이 사용으로 드롭다운 상자를 변경하고 유체 높이를 0.15로 설정하십시오.

o마지막으로 온도를 298K로 맞춥니다.

oXMAX 경계 조건

·
Z 최대 :

o경계 조건 위젯의 경계 섹션 아래에 있는 Z 최대 목록을 클릭하십시오. 경계 유형을 압력으로 설정하고 압력에 대해 0을 입력하십시오.

o다음으로 유체 분율을 0.0으로 설정하십시오.

o마지막으로 온도를 298K로 맞춘다.

ZMAX 경계 조건

추가 정보

자세한 내용은 모델 설정 장의 Mesh 경계 조건 섹션을 참조하십시오.

초기 조건

도메인 내부의 솔리드 객체(구성 요소)와 유체 모두에 대해 초기 조건을 설정해야 합니다.

·
구성 요소 :이 시뮬레이션에서 솔리드 객체에 필요한 유일한 초기 조건은 초기 온도입니다. 이것은 각 구성 요소에 대한 위젯에 설정되어 있는 구성 요소 속성에 대해 수행한 것과 유사한 방식으로 구성 요소를 등록합니다. 구성 요소 속성을 설정할 때 이전과 동일한 방법으로 구성 요소 1의 초기 온도를 350K로 설정하고 구성 요소 2의 초기 온도를 298K로 설정하십시오.

유체 초기 조건

유체: 유체의 초기 조건을 설정하기 위해 조금 더 설정해야 합니다. 이 경우 유체 구성, 온도, 속도 및 압력 분포를 모두 설정해야 합니다. 유체 초기 조건은 초기 위젯을 설정하고 초기 f3d_initial_icon를 클릭하면 열립니다.

f3d_initial_icon 아이콘을 선택한 후 유체 목록에서 압력을 선택하고 온도를 298K로 설정합니다. x, y, z 속도를 0.0으로 설정하십시오.

유체 초기 조건

다음으로, 높이/볼륨 목록과 유체 높이 사용 드롭다운 버튼을 선택합니다. 유체 높이를 0.15로 설정하십시오.

유체 초기 조건 계속

추가 정보

자세한 내용은 모델 설정 장의 초기 조건 섹션을 참조하십시오.

출력

FLOW-3D 옵션에는 결과 파일에 기록될 데이터와 출력 위젯에서 발견된 빈도를 제어하는 7가지 데이터 유형이 있습니다. 출력 f3d_output_icon 아이콘을 클릭합니다.

다른 데이터 유형은 다음과 같습니다.

·Restart: 모든 흐름 변수. 기본 출력 주기는 시뮬레이션 시간의 1/10입니다.

·Selected: 사용자가 선택한 흐름 변수 만. 기본 출력 주기는 시뮬레이션 시간의 1/100입니다.

·History: 하나의 변수와 시간의 변화를 보여주는 데이터. 예는 시간 단계 크기, 평균 운동 에너지, 배플에서의 유속 등을 포함합니다. 기본 출력 주기 = 시뮬레이션 시간의 1/100.

·Short print: hd3msg.*파일에 텍스트 진단 데이터가 기록 됩니다. 기본 출력 주기는 시뮬레이션 시간의 1/100입니다.

·Long print : hd3out.*파일에 텍스트 진단 데이터가 기록 됩니다. 기본 출력 주기는 시뮬레이션 시간의 1/10입니다.

·Solidification: 응고 모델이 활성화 된 경우에만 사용 가능합니다.

·FSI TSE: 변형 가능한 솔리드에 대한 추가 출력 옵션.

일반적으로 이 시뮬레이션에는 기본 출력 속도가 적합합니다. 그러나 Selected Data의 일부 추가 구성은 유용합니다. Selected data interval 0.5로 설정한 다음 Fluid 온도, Fluid velocity, Macroscopic density Wall 온도 옆에 있는 상자를 선택합니다. 그러면 이러한 값이 0.5초마다 출력됩니다.

출력 탭 설정

추가 정보

자세한 내용은 모델 설정 장의 출력 섹션을 참조하십시오.

Numerics

기본 Numerics 옵션은 대부분의 시뮬레이션에서 잘 작동하므로 기본 옵션에서 벗어나야 하는 충분한 이유가 없는 경우에는 현재 그대로 두는 것이 가장 좋습니다.

이것으로 모델 설정 섹션에서 시작된 예제 문제의 설정을 마칩니다. 이제 실행할 준비가 되었으므로 전처리 및 시뮬레이션 실행의 단계에 따라 시뮬레이션을 실행하십시오.

추가 정보

자세한 내용은 모델 설정 장의 Numerics 옵션 섹션을 참조하십시오.

일반 시뮬레이션 설정 점검 목록

시뮬레이션을 설정하는 데 필요한 단계에 대한 개략적인 개요가 아래에 나와 있습니다. 이 목록은 포괄적인 목록이 아닙니다. 일반적인 단계, 고려해야 할 몇 가지 중요한 사항 및 권장되는 설정 순서를 간단히 설명하는 안내서일 뿐입니다.

시작하기 전에

1.물리적 문제의 다이어그램을 그리기 및 주석 달기 : 이 다이어그램에는 기하학적 치수, 유체의 위치, 관련 힘, 움직이는 물체의 속도, 관련 열 전달 메커니즘 등이 포함되어야 합니다. 완성된 다이어그램은 문제에 대한 모든 관련 엔지니어링 정보로 인한 물리적 문제에 대한 이미지여야 합니다.

2.모델링 접근법 결정: 주석이 달린 다이어그램을 가이드로 사용하여 문제점에 접근하는 방법을 결정 : 문제가 되는 유체의 수, 혼화 가능한 경우, 하나 이상의 유체에서 방정식을 풀어야하는 경우 및 압축성이 중요한지 파악하여 시작하십시오. 그런 다음 어떤 물리적 메커니즘이 중요한지 결정하십시오. 이러한 각 옵션 (: 유체 유형, 열 전달 메커니즘 등)에 대한 관련 엔지니어링 정보를 다이어그램에 추가하십시오. 물리적 메커니즘이 포함되거나 무시된 이유를 정당화하려고 합니다. 이를 통해 시뮬레이션 프로세스 초기에 오류를 수정하는 데 시간이 거의 걸리지 않는 초기에 실수를 잡을 수 있습니다.

3.다이어그램에 계산 영역을 그리고, 계산 영역의 가장자리에 있는 물리적 상황 설명 : 경계의 물리적 상황을 가장 잘 나타내는 경계 조건 유형을 기록합니다. 사용 가능한 경계 조건 유형이 경계의 물리적 상황에 대한 합리적인 근사치가 아닌 경우 이 경계를 다른 곳으로 이동해야 합니다.

모델 설정 : 일반

1.문제, 시뮬레이션의 목적, 사례 번호 등을 설명하는 메모를 추가하십시오. 메모는 향후 사용자 또는 나중에 참조할 수 있도록 설정을 설명하고 정당화하는 데 도움이 됩니다. 시뮬레이션의 목적, 분석 방법 등을 논의해야합니다.

2.사용할 솔버와 프로세서 수를 선택하십시오.

3.단위 시스템 선택: 소규모 문제를 모델링 할 때는 작은 단위 ( : mm-gm-msec)사용하고 규모가 큰 문제는 큰 단위 ( : SI)를 사용하십시오. 이를 통해 기계 정밀도로 인한 반올림 오류를 방지할 수 있습니다.

4.유체 수, 인터페이스 추적 옵션 및 유량 모드를 선택하십시오. 주석이 달린 다이어그램을 이 단계의 지침으로 사용하십시오. 유체의 수는 질량, 운동량 및 에너지 보존을 관장하는 방정식이 유체 분율 f> 0″ width=”44″ height=”17″ border=”0″><!--[endif]--></span>(</span>유체<span lang= 1을 나타내는) 또는 유체 분획 f \ geq 0(유체 1 및 유체 2)이 있는 영역에서 해결되는지 여부를 나타냅니다. 인터페이스
추적 옵션은 유체 분율의 변화가 급격한지 또는 확산되어야 하는지 여부를 정의하는 반면, 흐름 모드는 f = 0두 유체 문제에서 처리되는 영역을 정의합니다.

5.마감 조건 정의: 시뮬레이션 종료 시점을 선택합니다. 시간, 채우기 비율 또는 기타 정상 상태 측정을 기반으로 할 수 있습니다.

6.기존 결과에서 시뮬레이션을 다시 시작하는 방법 정의 (선택 사항): 기존 결과 파일에서 시뮬레이션을 다시 시작할 때 다시 시작 옵션이 적용됩니다. 재시작 옵션은 재시작 소스 파일에서 가져온 정보와 시뮬레이션의 초기 조건을 사용하여 재설정되는 정보를 정의합니다.

모델 설정 : 물리

1.주석이 달린 다이어그램을 기반으로 관련 실제 모델 활성화

모델 설정 : 유체

1.유체의 속성 정의 1: 주석이 달린 다이어그램을 가이드로 사용하여 활성 물리적 모델에 대한 적절한 물리적 속성을 정의하십시오.

2.유체 2의 속성 정의 (사용하는 경우): 주석이 달린 다이어그램을 가이드로 사용하여 활성 물리적 모델에 적절한 물리적 속성을 정의하십시오.

3.인터페이스의 속성 정의: f = 1 f = 0의 영역 사이의 인터페이스 속성을 정의하십시오. 여기에는 표면 장력, 상 변화 및 확산에 대한 특성이 포함됩니다.

모델 설정 : Mesh 및 형상

1.모든 STL 파일의 오류 점검: ADmesh, netfabb Studio 또는 유사한 프로그램을 사용하여 모든 STL 파일의 오류를 점검하십시오. 이는 모델 설정에 시간을 소비하기 전에 형상
정의와 관련된 문제를 파악하는 데 도움이 됩니다.

2.모든 하위 구성 요소 및 구성 요소 가져 오기 및 정의 : 주석이 달린 다이어그램에 설명 된 대로 실제 사례와 일치하도록 3D 솔리드 형상을 정의합니다. 최종 결과는 물리적 형상의 정확한 복제본이어야 합니다. 각 부분에 설명적인 이름을 사용하고 대량 소스가 될 구성 요소를 포함하십시오.

3.모든 구성 요소의 속성 정의: 주석이 달린 다이어그램에 그려진 내용을 기반으로 각 구성 요소의 모든 재료 속성, 표면 속성, 모션 속성 등을 정의합니다. 경계 조건이 정의될 때까지 질량 소스 특성을 정의하기를 기다리십시오.

4.스프링과 로프 및 각각에 대한 관련 속성을 정의합니다.

5.주석이 달린 다이어그램에 설명된 시뮬레이션 도메인과 일치하도록 Mesh를 정의하십시오. 도메인의 모서리가 다이어그램에서 식별된 위치에 있는지 확인하십시오. 또한 인터페이스 (셀이 있는 셀과 셀이 f = 1다른 셀 이 있는 셀)를 식별하려면 세 개의 셀이 필요합니다.f = 0 ). 최소 5 개의 셀이 예상되는 가장 얇은 연속 영역에 맞도록 충분히 작은 셀을 사용하십시오. f = 1 f = 0 .

6.지오메트리를 정의하는 모든 배플 정의

7.경계 조건, 질량 소스, 질량 모멘텀 소스, 밸브 및 벤트 정의: 경계 조건 (질량 소스, 질량 모멘텀 소스, 밸브 및 벤트 포함)은 모든 방정식을 풀기 위해 주어진 위치에서 솔루션을 규정합니다. 주석이 달린 다이어그램을 사용하여 각 경계 (또는 소스 등)에 지정된 내용이 유동 솔루션, 열 전달 솔루션, 전위 등에 대한 현실과 일치하는지 확인하십시오.

8.유체 및 구성 요소의 초기 조건을 정의합니다. 초기 조건은 모든 방정식 (유량 솔루션, 열 전달 솔루션, 전위 등)에 대해 모든 영역에서 솔루션을 규정합니다.t = 0 .주석이
달린 다이어그램을 사용하여 초기 조건에 지정된 내용이 현재 현실에 대한 근사치인지 확인하십시오. 유체 영역뿐만 아니라 구성 요소의 초기 조건을 설정해야 합니다.

9.모든 측정 장치 정의 (샘플링 볼륨, 플럭스 표면 및 히스토리 프로브)

모델 설정 : 출력

1.출력 기준 (시간, 채우기 비율 또는 응고된 비율)을 선택하십시오.

2.재시작 데이터에 추가할 출력을 선택하십시오.

3.선택한 데이터에 기록할 정보를 선택하십시오.

4.재시작, 선택, 히스토리, 짧은 인쇄 및 긴 인쇄 데이터의 출력 속도 정의 : 기본 속도는 재시작 및 긴 인쇄 데이터의 경우 (10개 출력)/(시뮬레이션 종료 시간) 및 선택한 기록, 짧은 인쇄 데이터의 경우 (100개 출력)/(시뮬레이션 종료 시간)입니다.

모델 설정 : 숫자

1.기본값이 아닌 필수 숫자 옵션을 선택 FLOW-3D의 숫자 옵션은 고급 사용자를 대상으로 하며, 지배 방정식을 해결하는 데 사용되는 숫자 근사치 및 방법을 상당히 제어할 수 있습니다. 이러한 옵션 중 일부를 잘못 사용하면 솔루션에 문제가 발생할 수 있으므로 일반적으로 이 옵션의 기능을 먼저 이해하고 조정의 정당성을 갖추지 않고는 이러한 설정을 조정하지 않습니다.

5.FLOW-3D에서 후 처리

이 섹션에서는 FLOW-3D에 통합된 포스트 프로세서를 사용하는 방법에 대해 설명합니다. 보다 강력한 외부 포스트프로세서 FlowSight에 대한 튜토리얼은 FlowSight 설명서를 참조하십시오. 또한 이 섹션에서는 Flow Over A Weir 예제 문제를 실행하여 생성된 결과 파일을 사용합니다. 이 예제 문제를 실행하는 방법에 대한 지침은 예제 추가 및 시뮬레이션 사전 처리 및 실행을 참조합니다.

FlowSight 사용에 대한 기본 참조는 FlowSight Help->helpLocal Help 메뉴에서 액세스하는 FlowSight 사용자 설명서입니다.

추가 정보

기존 플롯

기존 플롯은 솔버가 자동으로 생성하는 사전 정의된 플롯입니다. 사용자 정의 플롯은 아래의 사용자 정의 플롯 섹션에 설명되어 있습니다.

1.분석 탭을 클릭하십시오. FLOW-3D 결과 대화 상자가 표시됩니다; 메세지가 나타나지 않으면 (분석 탭이 열림) 결과 파일 열기를 선택하여 동일한 대화 상자를 엽니다.

2.기존 라디오 버튼을 선택하십시오. 데이터 파일 경로 상자에 두 가지 유형의 파일이 표시됩니다 (있는 경우). 이름이 prpplt.*있는 파일 에는 전처리 flsplt.*기에 의해 자동으로 작성된 플롯이 포함되고 이름이 있는 파일에는 입력 파일에 사전 지정된 플롯 뿐만 아니라 후 처리기에 의해 자동으로 작성된 플롯이 포함됩니다.

3. 확인을 선택 flsplt.Flow_Over_A_Weir하고 클릭하십시오. 그러면 디스플레이 탭이 자동으로 열립니다.

기존 결과 대화 상자

4.사용 가능한 플롯 목록이 오른쪽에 나타납니다. 목록에서 해당 플롯의 이름을 클릭하면 특정 플롯을 볼 수 있습니다. 플롯 26 이 아래에 나와 있습니다.

기존 플롯보기

커스텀 플롯

1.분석 탭으로 돌아갑니다. 대화 상자를 열려면 결과 파일 열기를 선택하십시오.

2.전체 출력 파일을 보려면 사용자 정의 단일 선택 단추를 선택하십시오. 전체 출력 파일에는 prpgrf.*파일과 파일이 포함됩니다 flsgrf.*. 시뮬레이션이 실행되었으므로 전 처리기 출력 파일이 삭제되어 flsgrf파일에 통합되었습니다.

3.flsgrf.Flow_Over_A_Weir대화 상자 에서 파일을 선택하고 확인을 클릭하십시오.

FLOW-3D 결과 대화 상자

이제 분석 탭이 표시됩니다. 시뮬레이션 결과를 시각화 하는 방법에는 여러 가지가 있습니다. 사용 가능한 플롯 유형은 다음과 같습니다.

·Custom : 이 매뉴얼 의 FLSINP 파일을 사용하여 플롯합니다. 사용자 정의 섹션의 출력 코드를 사용하여 출력 플롯을 수동으로 수정하는 데 사용할 수 있습니다. 이것은 고급 옵션입니다.

·프로브 : 개별 셀, 경계, 구성 요소 및 도메인 전체(전역) 변수 대 시간에 대한 그래픽 및 텍스트 출력을 표시합니다. 자세한 내용은 프로브 플롯 프로브 : 특정 시점의 데이터와 시간 을 참조하십시오.

·1-D : 셀 데이터는 X, Y 또는 Z 방향의 셀 라인을 따라 볼 수 있습니다. 플롯 제한은 공간 및 시간에 모두 적용할 수 있습니다. 자세한 내용은 1-D 플롯 1-D : 라인을 따른 데이터 시간 을 참조하십시오.

·2-D : 셀 데이터는 XY, YZ 또는 XZ 평면에서 볼 수 있습니다. 플롯 제한은 공간 및 시간에 모두 적용할 수 있습니다. 속도 벡터 및 입자를 추가할 수 있습니다. 자세한 내용은 2 차원 플롯 2 차원 : 평면의 데이터와 시간의 데이터 를 참조하십시오.

·3-D : 유체와 고체의 표면 플롯을 생성하고 셀 데이터로 채색 할 수 있습니다. 속도 벡터, 입자 (있는 경우) 및 유선과 같은 추가 정보를 추가할 수 있습니다. 플롯 제한은 공간 및 시간에 모두 적용할 수 있습니다. 자세한 내용은 3D 플롯 3D : 표면의 데이터 시간 을 참조하십시오.

·텍스트 출력 : cell-by-cell 재시작, 선택 및 응고 데이터를 텍스트 파일에 쓸 수 있습니다. 자세한 내용은 텍스트 출력 텍스트 : ASCII 형식의 공간 데이터 출력 시간 을 참조하십시오.

·중립 파일 : 재시작 및 선택된 데이터는 별도의 텍스트 파일에 정의 된 지정된 지점(보간 또는 셀 중심)에서 출력 될 수 있습니다. 자세한 내용은 중립 파일 : 사용자 정의 좌표에서의 공간 데이터 출력 시간 을 참조하십시오.

·FSI TSE : 유한 요소 유체 / 고체 상호 작용 및 열 응력 진화 물리학 패키지에서 출력됩니다. 자세한 내용은 FSI / TSE : 표면의 구조 데이터와 시간 을 참조하십시오.

3 차원 도표

1.Analyze -> 3-D 탭을 선택하십시오.

2.Iso-surface = Fraction of fluid 선택하십시오. 이것은 표면을 그리는 데 사용되는 변수입니다. 선택한 등면 변수에 대한 등고선 값 기준을 충족하는 모든 셀을 통해 표면이 그려집니다. 유체의 분율이 기본값이며 유체 표면이 표시됩니다.

등 면형

3.색상 변수 = 압력을 선택하십시오. 이 선택은 등위면의 색을 지정하는 데 사용되는 변수를 결정합니다 (이 경우 유체 표면은 압력에 의해 색이 그려집니다).

색상 변수 유형

4.Component iso-surface overlay = Solid volume 선택하십시오. 솔리드 볼륨 은 유체와 함께 솔리드 구성 요소를 표시합니다. 이전 단계에서는 체적 분수의 보완을 등위면으로 선택하여 이 작업을 수행했지만 이 옵션을 사용하면 유체와 고체 표면을 동시에 플롯 할 수 있습니다.

등표면 옵션

5.이동 시간 프레임의 최소 및 최대 위치들 (0 내지 1.25 )에 슬라이더 위치.

시간대 옵션

6.렌더 버튼을 클릭하여 디스플레이 탭으로 전환하고 t = 0.0에서 1.25 초 사이에 일련의 11 플롯을 생성하여 압력에 의해 채색된 유체 표면과 위어 구조를 보여줍니다. 데이터 다시 시작 이 선택되었으므로 11 개의 플롯이 있습니다.

7.사용 가능한 플롯이 사용 가능한 시간 프레임 목록에 나열됩니다. 다음을 클릭하여 시간 프레임 사이를 이동하거나 시간 프레임을 두 번 클릭하여 표시하십시오. 첫 번째 및 마지막 시간 프레임은 다음과 같아야 합니다.

위어 구조 렌더링

8.Analyze -> 3-D 탭으로 돌아가서 Data Source 그룹에서 Selected data 라디오 버튼을 선택하십시오.

데이터 소스

9.시간 프레임 선택기의 두 슬라이더가 모두 오른쪽에 있으므로 마지막 시간 프레임 만 생성됩니다. 사용 가능한 시간 프레임이 많고 렌더링하는데 시간이 오래 걸리므로 선택한 데이터를 선택하면 인터페이스에서 자동으로 수행됩니다. 사용 가능한 모든 시간 프레임을 렌더링 하려면 왼쪽 슬라이더를 Time Frame Min = 0 으로 이동하십시오.

10. 렌더링 버튼을 클릭하십시오. 몇 초 안에 뷰가 디스플레이 창으로 전환되고 101 개의 플롯이 사용 가능한 시간 프레임 목록에 나열됩니다. 시간 프레임 사이를 이동하려면 다음을 반복해서 클릭하십시오.

대칭 흐름 표시

위어 중심 아래로 대칭 평면을 사용하여 시뮬레이션을 설정했으므로 위어 구조의 절반만 시뮬레이션되고 표시됩니다. 프리젠테이션 목적으로 대칭 모델의 두 반쪽을 모두 표시할
수 있습니다.

1.아래와 같이 Analyze -> 3-D 탭으로 돌아가서 Open Symmetry Boundaries 확인란을 선택하십시오.

열린 대칭 경계

2.렌더링을 클릭하십시오. 유체 표면이 디스플레이 탭의 대칭 경계에서 열린 상태로 나타납니다.

3.화면 위의 도구 모음 메뉴에서 도구 -> 대칭을 선택하십시오.

4.대화 상자에서 Y 방향 확인란을 선택하여 Y = 0 평면에서 결과를 미러링합니다.

대조

5.적용 닫기를 선택하십시오.

6.마지막 시간 프레임을 두 번 클릭하십시오. 디스플레이는 아래와 같이 전체 위어 구조를 보여줍니다.

전체 위어 구조

3 차원 애니메이션 만들기

다음 단계는 3 차원 유체 표면의 애니메이션을 만드는 것입니다. 애니메이션은 사용 가능한 시간 프레임 목록의 프레임에서 만든 동영상입니다. 애니메이션의 시각적 효과를 향상시키려면 모든 프레임에 공통 색상 스케일을 적용하는 것이 좋습니다.

1.분석 -> 3-D 탭으로 돌아갑니다.

2.윤곽 제한 그룹 상자에서 전역 라디오 버튼을 모두 선택하십시오.

윤곽 제한

3.렌더 클릭 하여 다시 그리고 디스플레이 탭으로 돌아갑니다.

4.도구 -> 대칭 -> Y 방향 -> 적용 선택을 반복하여 Y = 0 평면에서 결과를 반영합니다.

5.선택 도구 -> 애니메이션 -> 러버 밴드 캡처를 다음과 같이 선택 확인 Mesh지가 나타납니다 그것을 읽은 후.

러버 밴드 캡처

6.마우스 왼쪽 버튼을 클릭 한 상태에서 드래그하여 애니메이션을 적용할 화면 부분을 선택하십시오. 선택한 영역 주위에 선택 상자가 나타납니다.

X, Y, 너비 및 높이 상자

7.디스플레이 창 위에서 빨간색 캡처 버튼을 선택하십시오. 애니메이션을 시작하는 대화 상자가 나타납니다.

8.애니메이션의 기본 이름은 out.avi입니다. 아래에 표시된 것처럼 보다 구체적인 이름이 권장됩니다.

9.기본 프레임 속도는 초당 10 프레임입니다. 이 시뮬레이션의 마감 시간은 1.25 초이고, 일정한 시간 간격으로 100 개의 플롯이 있으므로실제속도는 초당 80 프레임입니다. 너무 빠를 수 있으므로 대신 5 입력 하고 확인을 누르십시오.

AVI 캡처

10. 각 시간 프레임이 표시 창에 렌더링 되고 비트 맵 파일이 시뮬레이션 디렉토리에 작성됩니다. 이 프로세스가 완료되면 다음 대화 상자가 나타납니다.

생성 된 이미지 소스 파일

  1. 프로세스의 다음 단계를 시작하려면 확인 버튼을 클릭하십시오. 새로운 프로세스 (BMP2VAI.exe)가 시작되고 압축 방법을 선택할 수 있는 새로운 비디오 압축 창이 나타납니다. 다른 창 뒤에 숨겨져 있으면 앞으로 가져옵니다.
  2. 애니메이션의 기본 압축은 압축되지 않습니다. 파일 크기가 너무 커서 뷰어에 로드 할 수 없으므로 대부분의 애니메이션에는 권장되지 않습니다. Windows를 사용하는 경우 Microsoft Video 1, Linux를 사용하는 경우 Cinepak 선택하십시오. 여기에서 선택하는 것은 컴퓨터에서 사용할 수 있는 비디오 코덱과 비디오를 표시하는 데 사용하는 기계에서 사용할 수 있는 것입니다.
  3. 애니메이션 속도가 데이터 속도에 의해 제한되지 않도록 데이터 속도 확인란을 선택 취소하십시오.
비디오 압축

  1. 압축 프로세스를 시작하려면 확인을 클릭하십시오. 압축이 완료되면 다음 대화 상자가 나타납니다.
AVI 파일 생성

  1. 확인을 클릭하십시오. 애니메이션 프로세스가 완료되었습니다.
  2. Windows 탐색기에서 .avi 파일을 찾는 가장 빠른 방법 은 시뮬레이션 관리자 탭으로 이동하여 시뮬레이션 입력 파일 링크를 클릭하는 것 입니다.
  3. .avi파일 을 두 번 클릭하여 애니메이션을 재생 하십시오. 이전에 선택한 압축 형식을 읽을 수 있는 올바른 코덱이 설치되어 있지 않으면 오픈 소스 다중 코덱 비디오 플레이어 설치를 고려하십시오.

2 차원 도표

1.Analyze -> 2-D 탭을 선택하십시오. 이 시뮬레이션의 결과를 보는 데 가장 유용한 평면은 평면 Y = 0.0에있는 위어 중심선의 XZ 평면입니다.

2.XZ 평면 라디오 버튼을 선택하십시오.

3.Y 제한 슬라이더를 모두 Y = 0.25 (Y = 0.0에 가장 가까운 셀 중심 y 좌표)로 드래그 합니다. 또한 동일한 위치가 J = 2 로 식별되어 해당 셀이 도메인에서 두 번째임을 나타냅니다. 첫 번째 셀 (J = 1) Mesh 외부에 있으며 경계
조건 속성을 계산하는 데 사용됩니다. 기본
윤곽 변수는 압력이며 기본 속도 벡터는 기본적으로 선택됩니다. 솔리드 형상은 모든 2D 플롯과 함께 자동으로 표시되므로 3D 플롯과 같이 활성화 할 필요가 없습니다.

4.벡터 옵션을 클릭하고 X = 2 Z = 2 입력하십시오. 벡터는 이제 다른 모든 셀에 플롯 됩니다. 벡터 옵션을 적용하려면 확인을 선택하십시오.

벡터 옵션

5.Y = 0 평면에서 2 차원 압력 플롯의 시간 시퀀스를 생성하려면 렌더링을 클릭하십시오. T = 0.0 (왼쪽) 인 다음과 유사한 그래픽이 나타납니다. T = 0.125 (중간); 그리고 T = 1.25 (오른쪽).

2D 결과

6.디스플레이 화면의 오른쪽 상단에 있는 형식 버튼을 선택하십시오.

형식 옵션

7.선 색상, 벡터 길이 및 화살촉 크기 변경과 같은 다양한 옵션을 시험해보십시오. 변경 사항을 보려면 적용을 선택하십시오. 완료되면 재설정 확인을 선택하여
기본 설정으로 돌아가서 대화 상자를 닫습니다. 모든 플롯에 대해 선호하는 옵션 세트가 있는 경우
저장 버튼을 선택하여 저장할 수 있습니다.

1 차원 도표

  1. 분석 -> 1-D 탭을 선택하십시오. 이 탭에서는 하나 이상의 플롯 시간에서 셀 행을 따라 압력, 유체 깊이, 유체 상승 및 속도와 같은 셀별 출력 변수의 꺾은 선형
    차트 플롯을 사용할 수 있습니다.
  2. 데이터 소스 로 선택을 선택합니다. 사용 가능한 변수는 이제 더 빈번한 플로팅을 위해 선택된 변수 만 표시합니다.
  3. 자유 변수 표고데이터 변수 로 선택하십시오. 유압 데이터출력 탭에서 선택되었으므로 사용할 수 있습니다.
ID 그래픽을 위해 선택된 데이터

  1. 이 시뮬레이션의 흐름 방향은 주로 x 축과 평행하므로 X 방향을 선택하십시오.
  2. Y 방향 슬라이더를 0.25(J = 2)로 이동하여 Y 방향에서 흐름 중심선에 가장 가까운 셀이 표시됩니다.
  3. 기본적으로 전체 X 범위가 표시됩니다. 플롯의 범위를 제한하려는 경우 X 방향 슬라이더를 이동할 수 있습니다. Z 방향 슬라이더의 위치는 주어진 x, y 위치에서 z 셀의 각 열에 대해 하나의 자유 표면 높이만 기록되므로 중요하지 않습니다. 시간 프레임 슬라이더는 0초와 1.25초여야 합니다.
흘러가는 방향

  1. 렌더링을 클릭하십시오. t = 0.0에서 t = 1.25s까지의 시리즈 플롯이 디스플레이 탭의 플롯 목록에 나열됩니다. 이러한 플롯을 볼 수 있는 여러 가지 모드가
    있습니다. 기본 모드는
    단일 모드이며 형식 버튼 아래의 드롭 다운 상자에 표시됩니다.
기본 단일 모드

  1. 다양한 시간에 유체 표면 높이의 플롯을 비교하려면 드롭 다운 상자에서 오버레이 모드를 선택하십시오.
  2. 오른쪽 창에서 플롯 1, 13 101 선택하려면 클릭하십시오. 플롯 이름에는 또한 기록된 시간이 표시됩니다 (t = 0.0, 0.15s 1.25 ). 출력은 아래와 같이 나타납니다.
자유 표면 고도

  1. 이 플롯을 비트 맵 또는 포스트 스크립트 파일에 저장하려면 출력 버튼을 선택하십시오.
  2. 확인 화면에 플롯 오버레이 플롯을 캡처하는 확인란을 (그리고 단 하나의 출력 파일을).
  3. 쓰기 버튼을 선택하여 이미지 파일을 만듭니다.
  4. 결과 이미지 파일은 시뮬레이션 디렉토리에 있으며 (시뮬레이션 관리자 탭 에서이 파일을 찾는 방법을 기억하십시오) 이름이 지정한 plots_on_screen.bmp됩니다.
출력 사진

프로브 플롯

1.
분석 -> 프로브 탭을 선택하십시오. 시간 기록 플롯은이 탭에서 변수 대 시간의 라인 그래프 또는 텍스트 출력으로 생성됩니다. FLOW-3D 에는 데이터 소스 그룹에서 선택되는 세 가지 유형의 시간 종속 데이터가 있습니다.

·공간 데이터 : 재시작 선택된 데이터 소스. 단일 x, y, z 셀 중심 좌표의 시간 종속 값이 표시됩니다. 값은 시간과 관련하여 통합되거나 시간과 관련하여 차별화되거나 이동 평균 (시간)으로 통합될 수 있습니다.

·일반 history 데이터 :. 글로벌 수량은 시간에 따라 다릅니다. 일반적인 양은 평균 운동 에너지, 시간 단계 및 대류 볼륨 오류입니다. 또한 이 데이터 유형에는 모델 설정 -> 메싱 및 지오메트리 탭에서 이러한 옵션을 선택한 경우 지정된 측정 위치(배플, 샘플링 볼륨, 히스토리 프로브)의 모든 데이터와 이동 또는 정지 상태의 솔리드 및 스프링/로프를
위한 통합 출력이 포함됩니다.

·Mesh-dependent data : 메쉬 경계에서 시간에 따른 수량(계산 또는 사용자 지정)입니다. 일반적인 수량은 경계에서의 유량 및 경계에서의 지정된 유체 높이입니다.

2.데이터 원본에서 일반 기록 라디오 버튼을 선택합니다. X, Y Z 데이터 점 슬라이더가 회색으로 바뀝니다. 이는 일반 기록 데이터가 특정 셀과 연결되어 있지 않기 때문입니다.

3.목록에서 질량  평균 유체 평균 운동 에너지를 선택하십시오.

그래픽 데이터 출력

4. 단위를 선택하여 플로팅 단위 대화 상자를 엽니다.

5. 플롯에 단위 표시를 선택하십시오.

6. SI, CGS, slugs/feet/seconds 또는 pounds/inches/seconds를 선택하여 원하는 단위 시스템으로 결과를 변환하고 출력합니다. 장치를 표시하고 변환하려면 모델 설정 -> 일반 탭에서 장치 시스템을 선택해야 합니다. 이전 단계에서 이 항목을 확인했으며, 지오메트리 및 유체 특성은 centimeters/grams/seconds 시스템에서 지정되었습니다.

플로팅 단위

7.Plotting Units 대화 상자를 닫으려면 OK를 선택하십시오.

8.데이터의 그래픽 출력을 생성하려면 렌더를 선택하십시오. 출력은 시간에 따른 영역의 모든 유체에 대한 질량 평균 평균 운동 에너지를 보여줍니다. 이전 단계에서 선택한 사항에 따라 단위 레이블과 함께 그림이 나타납니다. 플롯은 총 운동 에너지가 일부 평균값 주위에서 진동하고 있음을 나타냅니다. 진동이 작아짐에 따라 시뮬레이션은 정상 상태 흐름에 접근합니다.

프로브 MKE 출력

9.분석 -> 프로브 탭으로 돌아갑니다.

10. 출력 양식 그룹에서 텍스트를 선택하여 그래프를 텍스트 데이터로 출력한 다음 렌더링을 다시 선택하십시오.

출력 형태

11. 나타나는 텍스트 대화 상자에서 다른 이름으로 저장 버튼을 선택하여 출력을 텍스트 파일로 저장할 수 있습니다.

12. 출력 창을 닫으려면 계속을 선택하십시오.

텍스트 출력

1.Analyze -> Text Output 탭을 선택하십시오.

2.텍스트 출력 은 셀별 데이터 ( 다시 시작 또는 선택됨 ) 만 출력 할 수 있고 (구성 요소, 측정 스테이션 또는 글로벌 데이터 없음) 둘 이상의 셀을 선택할 수 있다는 점을 제외하고 프로브 탭 과 동일한 방식으로 작동합니다. 각 플롯 시간에 대한 출력 데이터. 셀은 슬라이더를 사용하여 3D 블록에서 선택됩니다. 기본 공간 범위는 전체 도메인으로 설정됩니다.

3.직접 텍스트 데이터를 출력해보십시오.

 

FLOW-3D TruVOF는 미국 및 기타 국가에서 등록 상표입니다.

밀도류 배플 시스템

Density Current Baffle Systems

Thanks to Mr. Earle Schaller and Dr. John Richardson for contributing this material.

NEFCO엔지니어들이 Density Current Baffle 시스템을 설계하는데 사용되는 절차를 개선하고자 했을 때, 그들은 경험에 기초한 종합적인 최첨단 모델링과 컴퓨터 모델링 분석 접근법을 개발했습니다.

Background                   

순환된 활성 슬러지 2 차 침전조는 중력에 의존하여 고형물을 정화하고 맑은 물을 생성합니다. 그러나, 원형 분류기는 탱크 내에서 발생된 밀도류에 의해 단락 회로에 영향을 받습니다. 침전조 내부에 설치된 밀도류 배플은 단락 회로의 영향을 최소화하고 유출 품질을 개선하는 가장 효과적인 방법으로 밝혀졌습니다. Stamford Density Current Baffle은 오늘날 사용되는 가장 일반적인 유형입니다. NEFCO는 물과 폐수처리 산업을 위한 공학적 섬유 유리제품을 생산합니다. 이 회사는 Stamford Baffle의 디자인과 개발을 선도했으며 이러한 배플 시스템의 세계적인 공급 업체입니다.

NEFCO Density Current Baffle Systems

NEFCO의 배플 디자인 접근 방식은 지난 20년간 개발되고 개선된 크기 알고리즘과 함께 광범위한 현장 연구가 결합되면서 시작됩니다. 이러한 노력 덕분에 회사는 다양한 표준 및 비표준 식별자 구성에 대한 배플을 설계할 수 있었습니다. 가장 최근에는 NEFCO가 FLOW-3D의 연산 모델링 능력을 사용하여 배플에 대한 이해를 더욱 넓히고 새로운 설계 전략을 개발했습니다.

환경 보호국 (Environmental Protection Agency, EPA)의 연구에 따르면 크기나 모양에 상관없이 모든 활성 슬러지의 2차 침전지에 밀도류가 형성되며 침전지 성능에 심각한 악영향을 미친다는 것을 보여줍니다. 이러한 밀도류는 흔히 탱크의 바닥으로 흘러 들어가 상대적으로 높은 속도의 문제를 일으킬 때 발생합니다. 이러한 교란 또는 밀도류는 슬러지 덮개 바로 위의 수평면으로 이동하여 더 가벼운 고체를 이용하여 탱크의 주요 부피를 줄입니다. 밀도류는 이러한 가벼운 고체를 유출로 운반하는 탱크 벽 위로 이동합니다. 그 결과 총 부유 물질(TSS)이 크게 증가하고 보존 시간이 크게 감소합니다.

Calculated flow pattern at outer wall of circular clarifier. Color range chosen to show location of sludge blanket.

 

A Picture is Worth a Thousand Words

Circular clarifier, cut-away view (not to scale)         

 

NEFCO는 Blue Hill Hydraulics와 협력으로 FLOW-3D로 Stamford Density Current Baffle System의 성능을 연구하기 위해 70 피트 3 차원 원형모델을 개발했습니다.

정화기 내의 유동 패턴 및 고체 분포는 배플 길이, 경사각 및 수직 위치를 포함하는 다양한 밀도류 배플 파라미터에 기초하여 계산되었습니다.

Solutions that Work

NEFCO사의 tamford Density Current Baffle System은 명확하게 구분할 수 있도록 탱크 내의 밀도류 흐름을 차단하고 방향을 바꾸도록 특별히 설계되었습니다. 이 시스템은 유압 용량을 증가시키고 총 부유 물질을 50%까지 감소시킵니다. FLOW-3D분석 결과,  NEFCO의 배플 설계 알고리즘을 확인하고 NEFCO가 최신 배플 설계 전략에 통합하고 있는 Baffle 성능에 대한 고유한 통찰력을 제공합니다.

Predicted flow patterns without the Stamford Density Current Baffle (colored by speed, red is fast)

Predicted flow patterns with the Stamford Density Current Baffle (colored by speed, red is fast)

수처리 분야

Municipal

FLOW-3D는아래 시설물과 같은 도시의 수처리 시설물 설계와 분석에 매우 활발하게 사용되고 있습니다:

  • Mixing, settling, and contact tanks
  • Control structures like weirs, gates, ramps, and orifices
  • Combined sewer (CSO) and stormwater sewer (SSO) overflow facilities
  • Pump and lift stations
  • Treatment plant headworks
  • Filtration systems and passive earth and stone filters
  • Baffle and wall placement
  • Hydraulic efficiency and short-circuiting

Vortex simulation municipal application with FLOW-3D

Vortex formation simulated with FLOW-3D

FLOW-3D는 자유표면, 가압(pressurized), 미임계(sub-critical)와 초임계(super-critical) 흐름조건 등을 전환하는 자유표면과 제한된 흐름패턴 모두와 균일한 모델 상태에 최적화되어 있습니다. 추가 물리 패키지를 포함하여 대부분의 복잡한 상황을 모델링 FLOW-3D에 포함되어 있습니다 :

  • Flow bulking due to air entrainment
  • Air bubble escape and air pocket pressurization
  • Drifting and settling particulate matter and the effect on the flow pattern of sediment accumulation
  • Chemical reactions
  • Moving gates and paddles
  • Fast-spinning bladed objects, pumps, and impellers
  • Dissolving and eroding solids
  • Granular flow (slurries)

적용사례

정수장 : DAF SYSTEMS

  • 용존공기부상법 (DAF Systems: Dissolved Air Floation )
    • 가압상태에서 과포화된 물을 감압시키면, 미세기포가 발생되어 상승하면서 수중의콜로이드물질과 충돌/부착되는 원리를 이용하여 수중의 부유물질을 제거하는 수처리 방법
  • Two Phase(Water+Air)/Drift Flux을 이용 기포에 의한 지내의 유동양상을 파악
  • 해석을 통한 기존 구조물의 문제점 파악하여 개선
  • 정수장_DAF_시스템

정수장 : 펌프장 해석

정수장_펌프장_모델해석결과

정수장_펌프장_모델

정수장 : 분말활성탄접촉조

  • v분말활성탄 접촉조 : 유입구의 구조, 수로의 장폭비, 도류벽구조에 의한 변화 -> 최적형상 도출
  • v해석을 통해 각종 Index(Morill Index, Modal Index 등) 분석

분말활성탄접촉초

정수장 : 응집제의 확산

  • G, 혼화지 구조에 따른 turn over time, 지내 속도 분포, 체류시간(t), 등 분석
  • 완속 혼화기, 급속혼화기에서 응집제의 혼화 및 분산 효과 파악

고속분사기_응집제확산

정수장 : 분배수로 유량분배

  • 분배수로의 기능 : 응집지 및 침전비 별로 균일하게 물을 분배함
  • 분배수로의 구조에 따른 응집지 유입수의 유량분배 해석
  • 구조별 유량분배 문제점 파악 및 개선방안 제시
  • 구조별 유량분배를 정량화하여 정수장 효율 향상에 기여함.

분배수로_유량분배

정수장 : 응집지 속도구배(du/dy) 검증

  • 응집기내부의 유동양상 및 속도구배(G)를 규명하여 최적의 운영조건 도출

응집지속도구배

정수장 : 여과지 역세척

  • Strainer를 통한 역세척수 유입 시 유동양상 해석 실시
  • 역세척 시 압력분포의 균일성, 사수부, 침전수의 월류여부 파악
  • 여과 및 역세척의 문제점 파악하여 효율향상 극대화

여과지_역세척

정수장 : 정수지 실험해석 비교

  • 정수지의 기능 : 염소를 균일하게 혼화
  • 정수지 유동양상 및 염소 농도, 체류시간 해석으로 CT 값 예측 및 문제점 개선
  • 실험과의 비교를 통하여 정확성 확보
  • 기존 정수지의 효율향상 및 최적 정수지 형태 제안
  • 정수지는 분말활성탄접촉조와 기능과 형상 유사

정수장_정수지해석

정수장 : 침전지대기온도, 일사량 등 외부조건 고려

  • 대기온도, 일사량 등 외부조건을 고려한 침전지 유동해석 실시
  • 침전지 내부의 밀도류 발생 원인 분석 및 Floc의 운동양상, 제거효율을 해석
  • 실험과의 비교를 통하여 정확성 확보

정수장_침전지_외부조건고려해석

정수장 : 취수탑 선택취수

  • v취수탑 : 상수도·관개·수력발전용 물을 저수지나 하천으로부터 끌어들이기 위한 구조물
  • v취수탑의 선택취수 문제 해석 사례
  • v취수탑 개도 조건에 따른 유출수온도, 조류 유입, 수심별 유입량 등을 예측

취수탑해석

 

하수처리장 : 침전지

  • 침전지 : 하수와 슬러지의 분리 및 배출 기능
    • 해석목적
    • 2차 침전지에서 유량 분배 문제점 파악
    • 2차 침전지에서 유입부 개선안 도출
    • 2차 침전지내의 슬러지 배출 개선안 도출

하수처리장_침전지_모델 하수처리장_침전지_모델_해석결과

 

하수처리장 : 침전지 유량분배 및 유속

  • 구조물의 형상, 유량에 따른 침전지 유동해석
  • 각 지별 유량 분배 균등 여부 파악
  • 슬러지의 재부상(scouring) 여부 예측 및 방지 방안 검토
  • 월류형식, 유입부의 위치 및 규격, 등 설계 요소를 조절하여 균등 분배 유도
    • 하수처리장_침전지_유량분배_해석결과

하수처리장 : 침전지 월류부 해석

  • 침전지 월류부 유동양상 파악
  • 침전지 형상, 월류부 형상에 따른 유속분포 비교
  • 사수부 파악 및 단락류 최소화를 위한 월류부 형상 결정
  • 슬러지의 월류부 개선을 통한 효율 향상

하수처리장_침전지_월류부해석

하수처리장 : 침전지 침전효율

  • 구조물의 형상별, 처리 유량별 침전효율, 사수부 평가
  • 균일한 유속분포에 의한 침전효율 향상
  • 침전지 형상, 유입부 위치, 등을 변경하여 효율 비교
  • 체류시간 검토를 통한 효율 비교
  • 슬러지 침전형태의 비교

하수처리장_침전지_침전효율

하수처리장 : 무산소조

  • 하수처리장 : 무산소조
  • 하수 및 반송슬러지의 혼합, 임펠러의 회전에 의한 혼합양상 해석 실시
  • 유입수 및 내부반송수의 유속분포, 혼합농도 평가
  • 단락류 발생정도 파악 및 완전교반 유도에 유리한 설계방안 검토
  • 내부반송량, 반송슬러지 유입관의 위치 개선으로 효율 향상

하수처리장_무산소조

하수처리장 : 담체의 부상

  • 설계 요소에 따른 담체의 분포 및 흐름 양상 예측
  • 해석 설계 요소 : 조의 형상, 펌프의 용량 및 위치, 내부 배플의 형상

하수처리장_담체의부상

하수처리장 : 호기조 (Aerator)

  • 호기조내 체류시간 분석
  • 기포의 분포, 조내 위치별 D.O 예측
  • 단락류 발생 정도 및 사수부 파악
  • 폭기량 및 폭기 방식에 따른 내부 유동양상을 통한 효율예측

하수처리장_호기조

하수처리장 : 호기조 (D.O 예측)

  • 용존산소량 (Dissolved Oxygen) : 물 속에 녹아 있는 산소량 è 수온이 높아지거나 오염되면 DO감소
  • 조내 산기관에 의해 오염수를 전체적으로 용존산소량 증가 목적 è 조내 사수부, 체류시간 분석
  • 산기관에 의한 공기 방울의 분포 및 D.O 분포를 수류의 흐름을 고려하여 예측
  • 호기조의 구조 및 산기관의 배치에 따른 효율 분석

하수처리장_호기조_용존산소량

하수처리장 : 막분리조

  • 막분리조내의 수류순환 유동해석 실시
  • Air 유입과 Membrane내의 수류순환 유동 검토
  • 사수부 최소화를 위한 구조 변경 (유입부 방식, 위치 및 산기관 위치, 등)
  • 처리 유량에 따른 내부 효율 변화 검토 – 운영조건 제시

하수처리장_막분리조

 

하수처리장 : SBR/PSBR 호기공정

  • 송풍기 작동시 원수와 슬러지의 혼합양상 분석
  • 수중포기기와 송풍기의 작동에 의해 조 내의 슬러지 혼합 활성화 여부 판단 : 수중포기기와 송풍기의 적절한 위치 및 회전수 조절에 의해 개선안 제시 가능

하수처리장_SBR_호기공정

하수처리장 : SBR/PSBR 배출공정

  • 조 내의 유출게이트 OPEN하여 조 내의 상등수 배출양상 분석
  • 바닥의 슬러지 유출없이 배출가능 여부 해석을 통하여 파악 슬러지가 배출되지 않도록 내의 형상 및 문제점 개서안 제시

하수처리장_SBR_배출공정

FlowSight

FlowSight

FlowSight는 FLOW-3DFLOW-3D CAST결과의 정교한 시각화를 제공하도록 설계된 고급 후 처리 도구입니다. FlowSight는 직관적인 후처리 인터페이스 내에서 우수한 결과 분석 기능을 갖춘 모델을 제공합니다. 스플 라인 경로를 따라 임의의 2D클립, 3D클립 및 투명도, 볼륨 렌더링, 고급 데이터 타임 시리즈 플로팅, 간소화 및 벡터 플롯은 사용 가능한 놀라운 도구의 일부에 불과합니다. FlowSight를 사용하면 여러 뷰 포트와 동적 객체 시각화 도구로 구성된 풍부한 기능 세트와 결합되어 있으므로 엔지니어는 분석 및 프레젠테이션 요구 사항에 맞게 CFD결과를 최대한 활용할 수 있습니다.

FlowSight는 모든 FLOW-3DFLOW-3D CAST라이센스에 포함되어 추가비용 없이 사용할 수 있습니다.

새로운–스플 라인 클립!

FlowSight의 스플라인 클립 기능을 사용하면 복잡한 곡면을 따라 클립을 생성할 수 있습니다. ogee weir 위로 물이 흐르는 시뮬레이션에서, 스플 라인은 ogee weir의 표면을 따라 형성됩니다. 그런 다음 스플 라인이 돌출되어 웨어 표면을 따라 물의 자유 표면 높이에 의해 색상이 지정된 클립을 생성합니다.

키 프레임 기능

크고 복잡한 시뮬레이션을 분석 할 때 매우 일반적인 문제는 관심 영역이 형상에 의해 가려지거나 시뮬레이션이 시간이 지남에 따라 변경됨에 따라 관심 영역이 변경 될 수 있다는 것입니다. 키 프레임은 분석 중에 형상을 “분리되도록”허용하고 시점이 시간과 공간을 통해 이동할 수 있도록 하여 이 문제를 해결합니다.

이 애니메이션은 FlowSight의 키 프레임 기능을 사용하여 충전하는 동안 다이 반쪽을 “시각적으로”열고 다이를 채우는 금속을 표시하면서 다이 표면에 고체 온도를 표시하는 방법을 보여줍니다.

Particle Visualization

FlowSight는 파티클(입자) 시각화 기능을 완벽하게 갖추고 있습니다. 입자는 입자 직경, 입자 밀도, 입자 수명, 속도 및 관련성이 있는 기타 변수에 의해 색상이 지정될 수 있습니다. 이 경우, 입자는 각각의 직경의 크기에 의해 착색됩니다.

속도 벡터 필드

FlowSight는 사용자에게 평면 또는 도메인 전체에 걸친 전체 볼륨 속도 및 방향 분석에 속도 벡터 필드를 시각화하는 옵션을 제공합니다. 사용자 지정 가능한 벡터 필드를 사용하면 다양한 색상 지정 및 밀도 조정이 가능하여 선명도를 높일 수 있습니다.

Streamlines & Pathlines

FlowSight의 유선(Streamlines) 기능은 복잡한 동적 패턴을 완전한 충실도로 시각화하여 유동장 속도 방향에 대해 실시간 스냅 샷을 제공합니다. 경로 선(Pathlines)은 시간을 따른 유체 입자의 궤적을 시뮬레이션하는 동안, 히스토리 라인은 유동장에서 유체 입자를 애니메이션 합니다.

Iso-surfaces

Iso-surfaces 은 유체 및 고체 표면을 시각화하는 강력하고 빠른 방법으로, 일정한 난류 에너지 영역을 표시하는 데 적합합니다.

Volume Render

iso-surface에서만 변수를 표시하는 대신 사용자 지정 가능한 볼륨 맵을 사용하여 볼륨 전체에 걸쳐 변수를 표시합니다. 그림에 표시된 바와 같이 각 기포와 주변 액체의 변형률 크기는 볼륨 렌더링과 함께 표시됩니다.

 

Multiple Data Views

숫자 및 다양한 그래프 등의 시각적 형식으로 분석하기

Visualizing Non-inertial Reference Frame Motion

Non-inertial reference frame visualization는 편리한 시뮬레이션 설정을 제공하고 계산 시간을 단축하며 사용자가 사실적인 방식으로 모델을 시각화 할 수 있게합니다.

2D Clips

2D 클립은 모든 단면 평면에서 유체 매개 변수를 시각화하는 데 사용됩니다.

3D Clipping

3D 클리핑 도구를 사용하면 사용자가 6 개 방향 모두에서 등면을 동시에 슬라이스 할 수 있으며, 높은 결함 영역을 감지하고 유체 및 고체 영역 내부의 온도, 압력, 속도 프로파일을 시각화하는 데 유용합니다.

  • 특정 방향의 범위 사이에 애니메이션 제공
  • 한 번에 한 방향으로 스왑
  • 양방향 애니메이션 : 앞으로 및 뒤로

Arbitrary Clips

평면, 원통형, 상자, 원뿔형, 구형 및 간소화된 표면에 대한 시각화를 포함하여 광범위한 유연성으로 표면 뷰를 분석할 수 있습니다. 유체 흐름이 평면이 아닌 표면에 대한 시각화가 필요한 경우 유용합니다. 임의 클립을 사용하면 연속적으로 여러 클립을 만들 수도 있습니다.

Probe Data

포인트 프로브는 시간에 따른 변수의 진화를 보여주고, 라인 프로브는 거리에 따른 변수 값의 변화를 반환합니다. 오른쪽, 프로브는 유체의 응고 비율을 보여줍니다.

Vortex Cores

와류 코어 식별에 사용할 수있는 두 가지 옵션인 와류 및 고유 분석을 통해 코어 강도에 따라 필터링 가능한 결과 생성이 가능합니다.

엔지니어들은 연구를 위해 다양한 시각화 방법을 사용합니다. 유체 흐름에서 와류 코어의 분석은 중요한 문제로, 와류 코어는 속도 필드 내에 와류 구조 (중앙 트레이스)를 나타내는 선 입니다. 기술적으로, FlowSight는 와류 방법 및 고유치 분석에서 속도 벡터와 소용돌이 벡터의 속도장에서의 식별위치는 평행합니다. FlowSight는 사용자에게 와류 코어 식별을 위한 두 가지 옵션을 제공합니다. 코어는 특정 강도 이상 또는 이하로 FlowSight에서 필터링 될 수 있습니다. 코어는 일반적으로 코어 주위에 회전 또는 단순히 순환 강도의 비율에 의해 채색됩니다. 아래의 예에서는, 와류 코어 고유치 값 분석을 이용하여 생성됩니다. 강한 코어는 소용돌이의 중심에 형성되어있는 것을 알 수 있습니다. 이를 통해 사용자는 펌프로 공기 흡입의 가능성을 연구 할 수 있습니다. 코어가 너무 강한 경우, 공기는 강한 와류로 인해 야기되는 열린 통로로부터 흡입될 수 있습니다.

History Data

그래프 도구는 일반적인 히스토리, 진단 및 메시 종속 데이터에 강력한 수준의 분석을 제공하여 서로 다른 시뮬레이션 데이터를 상대적으로 보여줍니다.