10.3.20 Sediment Scour Model 퇴적물 세굴모델

퇴적 세굴모델은 입자크기, 질량밀도 임계 전단응력, 안정각 및 연행과 이송 변수 들이 서로 다른 물성치를 가지는 다수의 비응집성 퇴적 종류들을 가정한다. 예를들면, 중간 크기 모래, 거친 모래 그리고 미세 자갈은 한 모사에서 세가지의 다른 종으로 분류될 수 있다. 이 모델은 3차원이나 천해 유동모델에서도 사용될 수 있다. 이 모델은 퇴적물의 운동을 퇴적물의 침식, 이류 그리고 퇴적을 예측함으로써 다음과 같이 추정한다.

  • 부유퇴적물 이송계산
  • 중력에의한 퇴적물의 침전 계산
  • 바닥의 전단 및 유동 섭동에의한 퇴적물 연행 계산
  • 퇴적 입자들이  하상하여 유사 바닥을 따라 구르고, 건너뛰고 그리고 미끄러지는 소류사 이동 계산

FLOW-3D 에서 이는 퇴적물이 존재할 수 있는 두 상태를 고려함으로써 이루어진다. 부유와 하상유사. 부유퇴적물은 일반적으로 농도가 낮고 유동과 함께 이류한다. 하상 유사는 사용자가 정의할 수 있는 임계 패킹율(디폴트값은 0.64)에서 존재한다. 단지 하상 유사 입자의 얇은 표면층(몇 개의 입자 직경 두께 정도에서)만 소류사 이동 형태로 이동할 수 있다.

퇴적물은 하상 유사 경계면에서 전단과 작은 와류에 의한 올려짐과 재부유에 의해 연행된다. 퇴적물의 각기 개별 입자에 대한 유동 역학을 계산하는 것은 불가능하므로 경험적모델이 사용되어야 한다. 여기서 사용되는 모델은 Mastbergen 와 Van den Berg [MVanDBerg03]에 의거한다. 또한 Soulsby-Whitehouse equation [Sou97] 방정식이 임계 Shields 변수를 예측하는데 이용될 수있거나 사용자 정의된 변수가 지정될 수 있다. 디폴트로 임계 Shields 변수는 0.05이다. 임계 Shields 변수를 계산하는 첫째 단계는 무차원변수 d*i 를 계산하는 것이다:

   (10.235)

여기서

  • ρi is the density of the sediment species i, ρi 는 퇴적종 i 의 밀도
  • ρf is the fluid density. ρf 는 유체밀도
  • di is the diameter. di 는 직경
  • µf is the dynamic viscosity of fluid. µf 는 유체의 동적점도
  • g‖ is the magnitude of the acceleration of gravity g. ‖g‖ 는 중력가속도 g 의 크기

이로부터 무차원 임계 Shields 변수는 Soulsby-Whitehouse equation [Sou97]를이용하여 계산된다:

   (10.236)

임계 Shields 변수는 안정각을 포함하기 위해 구배표면에 대해 수정될 수 있다. 이에 대한 개념은 구배 경계면에서 하상 유사는 덜 안정적이므로 구배를 따라 내려가는 유체에 의해 더 쉽게 연행된다는 것이다. 이의 수정은 더 θcr,i [Sou97] 를 변경시키며:

   (10.237)

여기서 β 는 하상의 경사 각도, ϕi 는 퇴적종 i의 사용자 정의된 안정각 (디폴트는 32)이며, ψ 는 유동과 하상의 위로 향한 경사각도이다. 하상 경사방향으로 직접 올라가는 유동에대해 ψ = 0.이다.

지역 Shields 변수는 지역 하상전단응력 τ 에 기초하여 계산되며:

   (10.238)

d50,packed,

여기서 τ 는 바닥 표면조도를 고려하여 각기 3차원 난류및 천해유동 난류에 대해서 벽의 법칙 및 바닥 전단응력의 2차원 법칙을 이용하여 계산된다. Nikuradse 의 바닥표면 조도 ks 는 하상 유사의 지역 중간 입자 직경 d50,packed 에 비례한다고 가정된다,

ks = croughd50,packed                                                                                                             (10.239)

여기서 crough 는 디폴트 값이0인 사용자 정의 계수이다.

The entrainment lift velocity of sediment is then computed as [MVanDBerg03]:

퇴적물의 들어올려지는 연행속도는 다음으로 계산된다[MVanDBerg03]:.

   (10.240)

여기서 αi 는 연행 변수이며 0.018[MVanDBerg03] 이 권장되고 ns 는 다져진 경계바닥 면에서 외부로 향하는 법선 벡터이다. ulift,i 는 실질적으로 하상경계면에서의 부유 퇴적물의 질량소스로 작용하며 부유물로 전환되는 하상 유사의 양을 계산하는데 이용된다. 그 후에 부유 퇴적물은 유동과 함께 이송된다.

퇴적은 부유입자가 부유상태로부터 무게에 의해 다져진 하상에 침전하거나 소류사 이동에서 정지하게 되는 과정이다. 입자의 연행 및 침전은 반대의 과정이며 종종 동시에 발생한다. Soulsby [Sou97] 에 의해 제안된 침전속도 방정식이 사용된다:

   (10.241)

여기서 νf 는 운동학적 점성이다. 침전운동은 중력방향이라고 가정된다.

   (10.242)

입자대 입자의 상호작용을 고려하기위해 Richardson-Zaki 상관관계가 침전속도에 적용되며,

u*settling,i = usettling,i(1 − cs)ζ   (10.243)

여기서 cs 는 부유퇴적물의 전체체적율이다. 지수 ζ 는 다음과 같다.

ζ = ζuserζ0   (10.244)

ζuser 는 Richardson-Zaki 계수의 승수이며(디폴트는 1.0) ζ0는 다음으로 정의되는 Richardson-Zaki 계수이다.

Re < 0.2 ζ0 = 4.35
0.2 < Re < 1.0 ζ0 = 4.35/Re0.03
1.0 < Re < 500 ζ0 = 4.45/Re0.1
500 < Re ζ0 = 2.39

여기서 Re 는 입자 Reynolds 수이며

   (10.245)

 

소류사 이송은 퇴적물의 다져진 바닥표면 위에서의 구름과 튀어오름에의한 부유물 이송의 형태이다. 사용자는 하상 폭당 퇴적물의 체적이송율을 위한 3가지 방정식중의 하나를 선택한다:

  • Meyer, Peter and Müller [MPM48]

Φi = βMPM,                                                               (10.246)

  • Nielsen [Nie92]

Φi = βNie,iθi0.5(θi θ′cr,i)cb,i                                                                                                   (10.247)

  • Van Rijn [vanRijn84]

             (10.248)

여기서 βMPM,i, βNie,i βVR,i 는 각기 일반적으로 8.0, 12.0 and 0.053에 상응하는 계수이다. cb,i 는 하상물질 내의 종 i 의 체적율이다. 원래식에는 존재하지 않으나 다수 종의 효과를 참작하기 위해 식 (10.246), (10.247) 와 (10.248) 에 더해진다. Φi 는 무차원 소류사 이송율이며 다음에 의해 체적 소류사 이송율 qb,i,에 관련되어 있다.

   (10.249)

식 (10.249)은 시간및 바닥 폭당 체적의 단위인 소류사 이송율을 계산한다. 또 다른 필요한 정보는 소류사 두께의 추정이다. 즉, 도약하는 퇴적물의 두께. 이 두께를 추정하는데 선택된 관계는 [vanRijn84]이다.

   (10.250)

 

각 계산셀내 퇴적물의 운동을 계산하기 위해 qb,i 값이 [vanRijn84]에의해 소류사 속도로 전환되며:

   (10.251)

여기서 fb 는 퇴적물의 임계 패킹율이다. 소류사 속도는 다져진 하상 경계면에 인접한 유체 유동의 속도와 같은 방향으로 가정된다.

각 종에 대해 부유퇴적물 농도는 각 고유의 이송방정식을 해석함으로써 계산되며,

   (10.252)

여기서 Cs,i 는 종 i 의 부유 퇴적 질량 농도이며, 이는 유체-퇴적물 혼합물의 체적당 퇴적물의 질량으로 정의된다; D 는 확산 계수; us,i 는 부유 퇴적물속도. 부유하고있는 각 퇴적종은 유체나 다른종의 속도들과는다른 고유한 속도로 움직인다. 이는 다른 질량밀도와 크기를 가지는 입자들은 다른 관성을가지고 다른 항력을 받기 때문이다.

Cs,i by

따라서 부유퇴적체적농도 cs,i 는 유체-퇴적물 혼합물의 체적당 부유퇴적종 i 의 질량으로 정의된다. 이는 다음에 따라 Cs,i 에 연결되어 있다,

   (10.253)

Cs,i에대한 방정식 식 (10.252) 을 해석하기 위해 us,i 가 우선 계산되어야 한다. 다음 두가지 1) 부유중인 입자는 서로 강한 간섭을 안하고 2)부유입자와 유체 퇴적 혼합물의 속도 차이는 주로 입자의 침전속도 usettling,i 차이라는 것이 가정된다. 그러므로 us,i Cs,i 를 이용하여 평가된다.

us,i = + usettling,ics,i                                                                                                           (10.254)

여기서 는 유체 퇴적 혼합물의 속도를 표시한다.

대류수치 불안정성을 피하기 위해 부유퇴적물 이송의 시간단계에 대한 제약이 있다. 퇴적입자는 한 시간단계에 한 계산셀 이상을 지나 이송될 수 없다. 퇴적물 이류에 열려진 면적 및 체적율의 효과가 또한 고려되어야 한다. 안정조건은

   (10.255)

where (us,i,vs,i,ws,i,) are the x, y and z components of us,i, respectively, and CON < 1.0 is a safety factor to account for “worst cases” of convective numerical instability.

여기서 (us,i,vs,i,ws,i,) 는 us,i, 의 각기 x, y그리고 z 성분이며 CON < 1.0 는 대류수치 불안정성의 “최악의경우”를 고려하기 위한  안전 인자이다.

이 모델에는 제약이 있다. 미세토사나 점토를 포함하는 간섭하는 토양에는 유효하지 않다. 이 모델에서 사용되는 퇴적이론의 제약된 타당성때문에 과도하게 큰 입자에 대해서는 사용에 주의를 기울여야 한다. 퇴적이론의 경험적 성격 및 난류모델에서와 같은 다른 근사 등으로인해 적용시 최상의 결과를 위해 변수의 보정이 이루어져야 한다.

천해에서의 들어올리는 속도, 임계 Shields 변수와 침전속도에 대한 경험식의 변경은 사용자가 수정 가능한 서브루틴 scour_lift.F, scour_critic.F 그리고 scour_uset.F.에서 이루어질  수 있다.