FLOW-3D 세굴 모델을 이용한 보(Barrage) 하류 정수지(Stilling Basin)의 성능 평가

연구 배경 및 목적
문제 정의
- 파키스탄 평야 지역의 주요 보(Barrage)들은 50~100년 전에 건설되었으며, 지속적인 침식과 구조적 결함 문제를 겪고 있음.
- 과거에는 미국 USBR(United States Bureau of Reclamation) Type III 정수지가 사용되었으나, 에너지 소산 효율이 낮아 개량이 필요함.
- 최근 개량된 USBR Type II 및 쐐기형 바플 블록(Wedge-Shaped Baffle Blocks, WSBB) 설계의 성능을 비교할 필요가 있음.
연구 목적
- FLOW-3D를 활용하여 USBR Type III, Type II, WSBB 정수지 모델을 구축하고 성능을 비교 분석.
- 유속 분포, 국부적 전단 응력(BSS, Bed Shear Stress), 세굴 깊이 및 세굴 길이 평가.
- 설계 방류량(28.30 m³/s/m) 및 홍수 방류량(17.5 m³/s/m) 조건에서 성능을 평가하여 최적의 설계를 도출.
연구 방법
수치 모델 설정 (FLOW-3D 적용)
- VOF(Volume of Fluid) 기법을 사용하여 자유 수면 추적.
- RNG k-ε 난류 모델을 적용하여 난류 특성 모사.
- 격자(cell) 크기: 비균일(non-uniform) 격자 사용, 3D CAD 모델링 적용.
- 경계 조건:
- 유입부: 실험 유량(28.30 m³/s/m 및 17.5 m³/s/m) 적용.
- 유출부: 자유 방출 조건 적용.
- 바닥 및 벽면: No-slip 조건 적용.
비교 모델
- USBR Type III (기존 설계)
- USBR Type II (개량 설계)
- WSBB (쐐기형 바플 블록 설계)
주요 결과
유속 분석
- 설계 방류량(28.30 m³/s/m) 조건에서 USBR Type III 모델은 유속이 가장 높고, WSBB 모델이 가장 낮았음.
- WSBB 모델의 경우 바플 블록으로 인해 유속이 효과적으로 감소.
- 홍수 방류량(17.5 m³/s/m) 조건에서도 WSBB 모델이 가장 낮은 유속을 보이며 안정적 흐름 형성.
전단 응력(BSS) 분석
- USBR Type III 및 Type II 모델은 높은 전단 응력을 보여 하류 침식 가능성이 높음.
- WSBB 모델에서는 전단 응력이 감소하여 세굴을 효과적으로 줄임.
세굴 분석
- USBR Type III 모델에서는 하류 강바닥이 완전히 노출됨(침식 심화).
- USBR Type II 모델에서는 침식이 85% 감소하였으나 여전히 문제가 있음.
- WSBB 모델에서는 침식이 가장 적었으며, 세굴 깊이가 최소화됨.
결론 및 향후 연구
결론
- WSBB 정수지가 USBR Type II 및 Type III 모델보다 더 효과적으로 에너지를 소산하고 하류 침식을 줄임.
- USBR Type II 모델은 기존 USBR Type III 모델보다 개선되었으나 여전히 침식 문제가 존재.
- FLOW-3D 모델이 정수지 설계 최적화 및 침식 저감 대책 수립에 활용 가능함.
향후 연구 방향
- LES(Large Eddy Simulation) 적용을 통한 난류 모델 개선.
- 실제 현장 실험과의 비교 검증을 통한 모델 정밀도 향상.
- 다양한 보(Barrage) 및 정수지 형상에 대한 추가 연구 수행.
연구의 의의
이 연구는 FLOW-3D를 활용하여 다양한 정수지 설계의 성능을 비교 분석한 연구로, 보 하류 침식 저감을 위한 최적 설계를 위한 기초 데이터를 제공하였다.



References
- Zaffar, M.W.; Hassan, I. Numerical Investigation of Hydraulic Jump for Different Stilling Basins Using FLOW-3D. AQUA Water
Infrastruct. Ecosyst. Soc. 2023, 72, 1320–1343. [CrossRef] - Zaffar, M.W.; Hassan, I. Hydraulic Investigation of Stilling Basins of the Barrage before and after Remodelling Using FLOW-3D.
Water Supply 2023, 23, 796–820. [CrossRef] - Zaidi, S.M.A.; Khan, M.A.; Rehman, S.U. 2004 Plan. Des. Taunsa Barrage Rehabil. Proj. Pakistan Eng. Congr. Lahore. 71st Annu.
Sess. Proc. 2004, 228–286. - Zaidi, S.M.A.; Amin, M.; Ahmadani, M.A. 2011 Perform. Eval. Taunsa barrage Emerg. Rehabil. Mod. Proj. Pakistan Eng. Congr.
71st Annu. Sess. Proc. 2011, 650–682. - Chaudhry, Z.A. Surface Flow Hydraulics of Taunsa Barrage: Before and After Rehabilitation. Pak. J. Sci. 2010, 62, 116–119.
- Chaudhry, Z.A. Hydraulic/Structural Deficiencies At the Taunsa Barrage. Pak. J. Sci. 2008, 61, 135–140.
- Al-Mansori, N.J.H.; Alfatlawi, T.J.M.; Hashim, K.S.; Al-Zubaidi, L.S. The Effects of Different Shaped Baffle Blocks on the Energy
Dissipation. Civ. Eng. J. 2020, 6, 961–973. [CrossRef] - Bradley, J.N.; Peterka, A.J. Discussion of “Hydraulic Design of Stilling Basins: Hydraulic Jumps on a Horizontal Apron (Basin I)”.
J. Hydraul. Div. 1958, 84, 77–81. [CrossRef] - Peterka, A.J. Hydraulic Design of Stilling Basins and Energy Dissipators. A Water Resources Technical Publication; United States
Department of the Interior: Washington, DC, USA, 1984; p. 240. - Ali, C.Z.; Kaleem, S.M. Launching/Disappearance of Stone Apron, Block Floor Downstream of the Taunsa Barrage and Unprecedent Drift of the River towards Kot Addu Town. Sci. Technol. Dev. 2015, 34, 60–65. [CrossRef]
- Chaudary, Z.A.; Sarwar, M.K. Rehabilitated Taunsa Barrage: Prospects and Concerns. Sci. Technol. Dev. 2014, 33, 127–131.
- Macián-Pérez, J.F.; Bayón, A.; García-Bartual, R.; Amparo López-Jiménez, P.; Vallés-Morán, F.J. Characterization of Structural
Properties in High Reynolds Hydraulic Jump Based on CFD and Physical Modeling Approaches. J. Hydraul. Eng. 2020, 146, [CrossRef] - Habibzadeh, A.; Loewen, M.R.; Rajaratnam, N. Performance of Baffle Blocks in Submerged Hydraulic Jumps. J. Hydraul. Eng.
2012, 138, 902–908. [CrossRef] - Habibzadeh, A.; Wu, S.; Ade, F.; Rajaratnam, N.; Loewen, M.R. Exploratory Study of Submerged Hydraulic Jumps with Blocks. J.
Hydraul. Eng. 2011, 137, 706–710. [CrossRef] - Eloubaidy, A.; Al-Baidhani, J.; Ghazali, A. Dissipation of Hydraulic Energy by Curved Baffle Blocks. Pertanika J. Sci. Technol. 1999,
7, 69–77. - Tiwari, H.L.; Gahlot, V.K.; Goel, A. Stilling Basins Below Outlet Works—An Overview. Int. J. Eng. Sci. 2010, 2, 6380–6385.
- Tiwari, H.L.; Goel, A. Effect of Impact Wall on Energy Dissipation in Stilling Basin. KSCE J. Civ. Eng. 2016, 20, 463–467. [CrossRef]
- Widyastuti, I.; Thaha, M.A.; Lopa, R.T.; Hatta, M.P. Dam-Break Energy of Porous Structure for Scour Countermeasure at Bridge
Abutment. Civ. Eng. J. 2022, 8, 3939–3951. [CrossRef] - Goel, A. Design of Stilling Basin for Circular Pipe Outlets. Can. J. Civ. Eng. 2008, 35, 1365–1374. [CrossRef]
- GOEL, A. Experimental Study on Stilling Basins for Square Outlets. In Proceedings of the 3rd WSEAS International Conference
on Applied and Theoretical Mechanics, Tenerife, Spain, 14 December 2007; pp. 157–162. - Pillai, N.N.; Goel, A.; Dubey, A.K. Hydraulic Jump Type Stilling Basin for Low Froude Numbers. J. Hydraul. Eng. 1989, 115,
989–994. [CrossRef] - Chanson, H. Energy Dissipation in Hydraulic Structures. Energy Dissipation Hydraul. Struct. 2015, 3, 1–167. [CrossRef]
- Marion, A.; Lenzi, M.A.; Comiti, F. Effect of Sill Spacing and Sediment Size Grading on Scouring at Grade-Control Structures.
Earth Surf. Process. Landf. 2004, 29, 983–993. [CrossRef] - Dey, S.; Sarkar, A. Characteristics of Turbulent Flow in Submerged Jumps on Rough Beds. J. Eng. Mech. 2008, 134, 599. [CrossRef]
- Balachandar, R.; Kells, J.A.; Thiessen, R.J. The Effect of Tailwater Depth on the Dynamics of Local Scour. Can. J. Civ. Eng. 2000, 27,
138–150. [CrossRef] - Mohammed, T.A.; Noor, M.J.M.M.; Huat, B.K.; Ghazali, A.H. Effect of Curvature and End Sill Angle on Local Scouring at
Downstream of a SpillwaY 96 Mm End Sill Angle (Degree) Radius of Curvature (Mm). Int. J. Eng. Technol. 2004, 1, 96–101. - Wüthrich, D.; Chamoun, S.; De Cesare, G.; Schleiss, A.J. Behaviour of a Scour Protection Overlay with Randomly Distributed
Concrete Prisms in Plunge Pools Downstream of Mobile Barrages for Exceptional Operation Conditions. In Proceedings of the 7th
IAHR International Symposium on Hydraulic Structures, ISHS 2018, Aachen, Germany, 15–18 May 2018; Volume 29, pp. 150–158. - Elsayed, H.; Helal, E.; El-Enany, M.; Sobeih, M. Impacts of Multi-Gate Regulator Operation Schemes on Local Scour Downstream.
ISH J. Hydraul. Eng. 2021, 27, 51–64. [CrossRef] - Ahmed Amin, A.M. Physical Model Study for Mitigating Local Scour Downstream of Clear Over-Fall Weirs. Ain Shams Eng. J.
2015, 6, 1143–1150. [CrossRef] - Heller, V. Scale Effects in Physical Hydraulic Engineering Models. J. Hydraul. Res. 2011, 49, 293–306. [CrossRef]
- Siuta, T. The Impact of Deepening the Stilling Basin on the Characteristics of Hydraulic Jump. Czas. Tech. 2018, 3, 173–186.
[CrossRef] - Ghaderi, A.; Daneshfaraz, R.; Dasineh, M.; Di Francesco, S. Energy Dissipation and Hydraulics of Flow over TrapezoidalTriangular Labyrinth Weirs. Water 2020, 12, 1992. [CrossRef]
- Carvalho, R.F.; Lemos, C.M.; Ramos, C.M. Numerical Computation of the Flow in Hydraulic Jump Stilling Basins. J. Hydraul. Res.
2008, 46, 739–752. [CrossRef] - Bayon-Barrachina, A.; Lopez-Jimenez, P.A. Numerical Analysis of Hydraulic Jumps Using OpenFOAM. J. Hydroinform. 2015, 17,
662–678. [CrossRef] - Chanson, H.; Gualtieri, C. Similitude and Scale Effects of Air Entrainment in Hydraulic Jumps. J. Hydraul. Res. 2008, 46, 35–44.
[CrossRef] - Viti, N.; Valero, D.; Gualtieri, C. Numerical Simulation of Hydraulic Jumps. Part 2: Recent Results and Future Outlook. Water
2018, 11, 28. [CrossRef] - Sabeti, R.; Heidarzadeh, M. Numerical Simulations of Tsunami Wave Generation by Submarine Landslides: Validation and
Sensitivity Analysis to Landslide Parameters. J. Waterw. Port Coast. Ocean Eng. 2022, 148, 05021016. [CrossRef] - Yildiz, A.; Marti, A.I.; Yarar, A.; Yilmaz, V. Determination of Position of Hydraulic Jump in a Flume by Using CFD and Comparison
with Experiential Results Https://Doi.Org/10.21698/Rjeec.2020.211 P. Rom. J. Ecol. Environ. Chem. 2020, 2, 78–85. [CrossRef] - Jalal, H.K.; Hassan, W.H. Three-Dimensional Numerical Simulation of Local Scour around Circular Bridge Pier Using Flow-3D
Software. IOP Conf. Ser. Mater. Sci. Eng. 2020, 745, 012150. [CrossRef] - Alasta, M.S.; Ali Ali, A.S.; Ebrahimi, S.; Masood Ashiq, M.; Sami Dheyab, A.; AlMasri, A.; Alqatanani, A.; Khorram, M. Modeling
of Local Scour Depth Around Bridge Pier Using FLOW 3D. Comput. Res. Prog. Appl. Sci. Eng. 2022, 8, 1–9. [CrossRef] - Mehnifard, M.; Dalfardi, S.; Baghdadi, H.; Seirfar, Z. Simulation of Local Scour Caused by Submerged Horizontal Jets with
Flow-3D Numerical Model. Desert 2015, 20, 47–55. - Samma, H.; Khosrojerdi, A.; Rostam-Abadi, M.; Mehraein, M.; Cataño-Lopera, Y. Numerical Simulation of Scour and FLow FIeld
over Movable Bed Induced by a Submerged Wall Jet. J. Hydroinform. 2020, 22, 385–401. [CrossRef] - Epely-Chauvin, G.; De Cesare, G.; Schwindt, S. Numerical Modelling of Plunge Pool Scour Evolution in Non-Cohesive Sediments.
Eng. Appl. Comput. Fluid Mech. 2014, 8, 477–487. [CrossRef] - Daneshfaraz, R.; Ghaderi, A.; Sattariyan, M.; Alinejad, B.; Asl, M.M.; Di Francesco, S. Investigation of Local Scouring around
Hydrodynamic and Circular Pile Groups under the Influence of River Material Harvesting Pits. Water 2021, 13, 2192. [CrossRef] - Bayon, A.; Valero, D.; García-Bartual, R.; Vallés-Morán, F.J.; López-Jiménez, P.A. Performance Assessment of OpenFOAM and
FLOW-3D in the Numerical Modeling of a Low Reynolds Number Hydraulic Jump. Environ. Model. Softw. 2016, 80, 322–335.
[CrossRef] - Aydogdu, M.; Gul, E.; Dursun, O.F. Experimentally Verified Numerical Investigation of the Sill Hydraulics for Abruptly
Expanding Stilling Basin. Arab. J. Sci. Eng. 2022, 48, 4563–4581. [CrossRef] - Abd El Azim, N.; Saleh, O.; Tohamy, E.; Mahgoub, S.; Ghany, S. Effect of Vertical Screen on Energy Dissipation and Water Surface
Profile Using Flow 3D. Egypt. Int. J. Eng. Sci. Technol. 2022, 38, 20–25. - Kosaj, R.; Alboresha, R.S.; Sulaiman, S.O. Comparison between Numerical Flow3d Software and Laboratory Data, for Sediment
Incipient Motion. IOP Conf. Ser. Earth Environ. Sci. 2022, 961, 012031. [CrossRef] - Mirzaei, H.; Tootoonchi, H. Experimental and Numerical Modeling of the Simultaneous Effect of Sluice Gate and Bump on
Hydraulic Jump. Model. Earth Syst. Environ. 2020, 6, 1991–2002. [CrossRef] - Macián-Pérez, J.F.; García-Bartual, R.; Huber, B.; Bayon, A.; Vallés-Morán, F.J. Analysis of the Flow in a Typified USBR II Stilling
Basin through a Numerical and Physical Modeling Approach. Water 2020, 12, 227. [CrossRef] - Karim, O.A.; Ali, K.H.M. Prediction of Flow Patterns in Local Scour Holes Caused by Turbulent Water Jets. J. Hydraul. Res. 2000,
38, 279–287. [CrossRef] - Ghosal, S.; Moin, P. The Basic Equations for the Large Eddy Simulation of Turbulent Flows in Complex Geometry. J. Comput.
Phys. 1995, 118, 24–37. [CrossRef] - Pourshahbaz, H.; Abbasi, S.; Pandey, M.; Pu, J.H.; Taghvaei, P.; Tofangdar, N. Morphology and Hydrodynamics Numerical
Simulation around Groynes. ISH J. Hydraul. Eng. 2022, 28, 53–61. [CrossRef] - Johnson, M.C.; Savage, B.M. Physical and Numerical Comparison of Flow over Ogee Spillway in the Presence of Tailwater. J.
Hydraul. Eng. 2006, 132, 1353–1357. [CrossRef] - Ghosh, M.K.; Kumar, G.; Sen, D. Local Scour Characteristics Downstream of Diversion Barrages. Proc. Inst. Civ. Eng. Water
Manag. 2009, 162, 309–319. [CrossRef] - Man, C.; Zhang, G.; Hong, V.; Zhou, S.; Feng, Y. Assessment of Turbulence Models on Bridge-Pier Scour Using Flow-3D. World J.
Eng. Technol. 2019, 7, 241–255. [CrossRef] - Mirzaei, H.; Heydari, Z.; Fazli, M. The Effect of Meshing and Comparing Different Turbulence Models in Predicting the
Topography of Bed and Flow Field in the 90 Degree Bend with Moving Bed. Model. Earth Syst. Environ. 2017, 3, 799–814. [CrossRef]