자유 표면 흐름은 가정과 사무실 환경 모두에서 사용되는 소비자 제품의 설계 및 제조에서 일반적입니다. 예를 들어, 병 채우기는 매일 대규모로 이루어지는 프로세스입니다. 생산 속도를 극대화하면서 낭비를 최소화하도록 이러한 프로세스를 설계하면 시간이 지남에 따라 상당한 비용 절감으로 이어질 수 있습니다. FLOW-3D는 또한 스프레이 노즐을 설계하고 다공성 재료 및 기타 소비재 구성 요소의 흡수 기능을 모델링하는 데 사용할 수 있습니다. FLOW-3D 의 공기 유입, 다공성 매체 및 표면 장력을 포함한 고급 다중 물리 모델을 사용하면 소비자 제품 설계를 정확하게 시뮬레이션하고 최적화하는 것이 쉽습니다.
충전재
유입된 공기는 생산 라인에서 용기를 채울 때 액체의 부피를 늘릴 수 있습니다. 아래 왼쪽 이미지는 높이가 약 20cm인 병을 1.2초 동안 채우는 것을 보여줍니다. 색상 음영은 액체에 있는 공기의 부피 분율을 나타냅니다. 병에서 혼합 시간이 짧고 혼합 정도가 높기 때문에 공기가 표면으로 올라가 빠져나갈 시간이 없었습니다. 그러나 오른쪽 이미지에서 볼 수 있듯이 약 1.7초의 추가 시간이 지나면 공기가 표면으로 올라가면서 발생하는 액체 부피 감소가 명확하게 보입니다. FLOW-3D 의 드리프트 플럭스 모델을 사용하면 액체에 있는 기포와 같은 구성 요소를 분리하여 분리할 수 있습니다.
이 기사에서는 FLOW-3D를 사용하여 새로운 타이드 병 디자인의 충전을 모델링하는 방법을 설명하며, Procter and Gamble Company의 기술 섹션 책임자인 John McKibben이 기고했습니다 .
지금 오전 9시인데 긴급 이메일을 받았다고 상상해보세요.
방금 새로운 Tide® 병 디자인 중 하나가 손잡이에 채워지고 충전 장비에 문제가 생길 수 있다는 것을 깨달았습니다. 우리는 프로토타입 병이 없으며 몇 주 동안 없을 것입니다. 디자이너와 소비자는 디자인의 모습을 좋아하지만, 채우는 방식이 생산 시설에 쇼스토퍼가 될 수 있습니다.
이런 상황이 제게 주어졌을 때, 저는 3D 지오메트리(그림 1)의 스테레오 리소그래피(.stl) 파일을 요청하여 응답을 시작했고, 제가 무엇을 할 수 있는지 알아보고자 했습니다. 저는 FLOW-3D가 .stl 파일을 사용하여 지오메트리를 입력하고 충전을 위한 자유 표면 문제를 해결할 수 있을 것이라는 것을 알고 있었습니다. 저는 이것이 잠재적인 문제에 대한 좋은 정성적 이해를 제공할 것으로 기대했지만, 이 애플리케이션에 얼마나 정확할지에 대해 약간 불확실했습니다.
시뮬레이션 설정 및 실행
오후 1시경에 저는 지오메트리 파일, 유량, 유체 특성을 받았습니다. 몇 시간 이내에 시뮬레이션이 실행되어 예비 결과가 나왔습니다. 저는 제 고객을 초대하여 결과를 잠깐 살펴보게 했고 그는 “사장의 상사”를 데려와서 살펴보게 했습니다. 그래서 저녁 5시경에 예비 결과를 살펴보고 원래 우려했던 것이 문제가 아니라는 것을 확인했습니다.
하지만 결과는 몇 가지 다른 의문을 제기했습니다. 손잡이에 채우면 유입 유체 제트가 많이 깨졌습니다. 이렇게 하면 유입 공기와 거품의 양이 늘어날 것이라는 걸 알았습니다(결국 세탁 세제를 채우고 있으니까요). FLOW-3D 공기 유입 모델을 테스트하기로 했습니다. 이 모델은 원래 난류 제트용으로 개발되었고, 이 층류 문제를 살펴보면 얼마나 잘 수행될지 확신할 수 없었습니다.
그림 2는 공기 유입 모델이 있는 경우와 없는 경우 병 충전 모델의 결과를 보여줍니다. 유입 공기가 포함되면 충전 레벨이 상당히 증가한다는 점에 유의하십시오. 유입 공기가 병 상단에서 유체를 강제로 밀어내지는 않지만 공기 유입 정확도를 확인해야 할 만큼 충분히 가깝습니다. 그림 3은 공기 유입 레벨을 몇 주 후에 실행한 실험 이미지와 비교합니다(시제품 병이 출시된 후). 제트 분리 및 충전 레벨의 질적 일치는 우수하며 시뮬레이션이 병 설계를 선별하기에 충분히 정확하다는 것을 확인했습니다.
홍조
변기가 어떻게 작동하는지 궁금한 적이 있나요? 사실 꽤 복잡합니다. 손잡이를 밀면 물이 변기 그릇을 채우기 시작합니다. 변기 그릇의 유체 수위가 트랩 상단(변기 그릇 뒤) 위로 올라가면 웨어 유형의 흐름이 시작됩니다. 흐름이 충분히 빠르면 변기 그릇에 거품이 형성되어 사이펀이 생성됩니다. 그 지점에서 사이펀이 변기 그릇에서 물을 끌어내고 변기가 물을 흘립니다. 많은 지역에서 물 절약은 중요한 문제이며, 저유량 변기는 가정과 상업용 모두에 필요합니다. 하지만 변기가 첫 번째 시도에서 제 역할을 하지 못하면 물 절약 목표는 달성되지 않습니다. FLOW-3D를 사용하면 다양한 설계를 모델링하여 최적의 결과를 얻을 수 있습니다.
식품 가공
식품 가공 산업은 복잡한 유체, 일반적으로 비뉴턴 유체, 슬러리, 고체와 유체의 혼합물을 관리하여 분배 장비를 최적으로 설계하고 제조하기 위한 다양한 요구 사항이 있습니다. 이는 상업용 장비의 일관성과 내구성 및 품질에 필수적입니다. 또한 포장 디자인의 혁신을 통해 한 제품을 다른 제품과 명확히 구별할 수 있습니다. 예를 들어, 꿀, 케첩 또는 크리머를 깨끗하고 정확하게 분배하는 것은 소비자가 매장에서 내리는 선택일 수 있습니다. 운송 및 보관 요구 사항에는 더 나은 모양 엔지니어링과 더 많은 용기 재료 선택이 필요합니다. 1.5리터 물병이나 세탁 세제를 움직이거나 떨어뜨리는 동안의 유체 하중은 상류 설계의 중요한 부분이 될 수 있습니다.
꿀, 옥수수 시럽, 치약과 같은 점성 유체는 일반적으로 고체 표면에 닿으면 코일을 형성하는 경향이 있습니다. 이 효과는 관찰하기에 흥미롭고 재미있지만, 공기가 제품에 끌려들어 포장이 어려워질 수 있는 포장 공정에서는 환영받지 못할 수 있습니다. 코일링이 발생하는 조건은 유체의 점도, 유체가 떨어지는 거리, 유체의 속도에 따라 달라집니다. FLOW-3D는 다양한 물리적 공정 매개변수를 연구하여 효율적인 공정을 설계하는 데 도움이 되는 정확한 도구를 제공합니다.
혼입
지난 수십 년 동안 컴퓨터화된 측정 및 시뮬레이션 기술의 발전으로 인해 혼합에 대한 이해가 크게 진전되었습니다. 유동 모델링 기술의 지속적인 발전 덕분에 혼합 장비의 유동 의존적 프로세스에 대한 자세한 통찰력을 CFD 소프트웨어를 사용하여 쉽게 시뮬레이션하고 이해할 수 있습니다. 오늘날 블렌딩에서 고체 현탁액, 재킷 반응기의 열 전달에서 발효에 이르기까지 광범위한 응용 분야가 FLOW-3D 의 혼합 기술을 사용하여 모델링됩니다. FLOW-3D 시뮬레이션은 임펠러의 모든 구성과 모든 용기 형상의 혼합 조건에서 블렌딩 시간, 순환 및 전력 수와 같은 주요 혼합 매개변수를 평가하는 데 도움이 될 수 있습니다. 이러한 시뮬레이션은 실험적 방법을 사용하여 보완합니다. 이러한 장비의 유동 의존적 프로세스를 예측하고 이해하기 위해 CFD 소프트웨어를 사용하면 제품 품질을 향상시키고 많은 제품의 비용과 출시 시간을 모두 줄일 수 있습니다.
비뉴턴 유체
혈액, 케첩, 치약, 샴푸, 페인트, 로션과 같은 비뉴턴 유체는 다양한 점도를 가진 복잡한 유동학을 가지고 있습니다. FLOW-3D 는 변형 및/또는 온도에 따라 달라지는 비뉴턴 점도를 가진 이러한 유체를 모델링합니다. 전단 및 온도에 따른 점도는 Carreau, 거듭제곱 법칙 함수 또는 단순히 표 형식의 입력을 통해 설명됩니다. 일부 폴리머, 세라믹 및 반고체 금속의 특징인 시간 종속 또는 틱소트로피 거동도 시뮬레이션할 수 있습니다.
핸드 로션 펌프는 종종 여러 가지 설계 문제와 관련이 있습니다. 펌프가 공기 공극을 가두지 않고 효과적으로 작동하고 로션의 연속적인 흐름을 생성하는 것이 중요합니다. 좋은 설계는 노력이 덜 필요하고 이상적으로는 로션을 원하는 곳으로 향하게 합니다. FLOW-3D 의 이동 객체 모델은 노즐이 아래로 눌리는 것을 시뮬레이션하여 저장소의 로션을 가압하는 데 사용됩니다. 로션의 압력과 로션을 추출하는 데 필요한 힘을 연구할 수 있습니다. 여러 설계 변수는 동일한 고정 구조 메시 내에서 쉽게 분석할 수 있습니다.
다공성 재료
다공성 매체에서 유체의 이동에 대한 수치 모델링은 어려울 수 있지만 FLOW-3D 에는 다공성 재료와 관련된 문제를 해결하는 데 유용한 기능이 많이 포함되어 있습니다. FAVOR™ 기술에는 사용자가 연속적인 다공성 매체를 표현할 수 있도록 하는 데 필요한 다공성 변수가 포함되어 있습니다. FLOW-3D를 사용하면 사용자가 포화 및 불포화 흐름 조건을 모두 시뮬레이션할 수 있습니다. 거듭제곱 법칙 관계를 사용하면 불포화 흐름 조건에서 모세관 압력 과 포화 사이의 비선형 관계를 모델링 할 수 있습니다. 별도의 충전 및 배수 곡선을 사용하여 히스테리시스 현상을 모델링할 수 있습니다. 서로 직접 접촉하는 경우에도 서로 다른 다공성, 투과성 및 습윤성 속성을 서로 다른 장애물에 할당할 수 있습니다. 투과성은 흐름 방향에 따라 지정할 수 있으므로 사용자가 다공성 매체의 이방성 동작을 모델링할 수 있습니다. 유체와 다공성 매체 간의 열 전달을 고려할 수 있습니다.
분무
소용돌이 분무 노즐은 화학 세정제, 의약품 및 연료에서 액체를 분사하는 일반적인 방법입니다. 액체를 성공적으로 분무하려면 일반적으로 노즐로 침투하는 공기 코어를 형성해야 합니다. CFD는 최적의 분무 콘에 대한 기하학, 소용돌이 속도 및 유체 특성의 영향을 탐색하는 효과적인 방법입니다.
이 예에서 2차원 축대칭 소용돌이 흐름이 시뮬레이션되었습니다. 대칭 축을 따라 공기 코어가 노즐의 전체 길이를 거의 관통했습니다. 왼쪽 플롯은 평면에서 속도 분포를 나타내는 벡터가 있는 압력 분포입니다. 오른쪽 플롯은 속도의 소용돌이 구성 요소로 채색되어 있으며 빨간색은 더 높은 값을 나타냅니다.
분무 콘의 규모와 입자 크기가 너무 광범위하기 때문에 분무의 완전한 분무를 직접 계산하는 것은 불가능합니다. 또한 분무는 외부 교란, 노즐의 미세한 결함 및 기타 영향과 밀접하게 관련된 혼란스러운 프로세스입니다. 그러나 노즐을 떠날 때 분무 콘의 특성(예: 벽 두께, 콘 각도, 축 및 방위 속도)을 예측할 수 있다면 이러한 유형의 흐름 장치를 최적화하는 데 큰 도움이 됩니다.
Products
자유 표면 흐름은 가정과 사무실 환경 모두에서 사용되는 소비자 제품의 설계 및 제조에서 일반적입니다.
예를 들어, 병 채우기는 매일 대규모로 진행되는 프로세스입니다. 생산 속도를 최대화하면서 낭비를 최소화하도록 이러한 프로세스를 설계하면 시간이 지남에 따라 상당한 비용 절감으로 이어질 수 있습니다. FLOW-3D는 또한 스프레이 노즐을 설계하고 다공성 재료 및 기타 소비재 구성 요소의 흡수 기능을 모델링하는 데 사용할 수 있습니다.
공기 혼입, 다공성 매질 및 표면 장력을 포함한 FLOW-3D의 고급 다중 물리 모델을 사용하면 소비자 제품 설계를 정확하게 시뮬레이션하고 최적화 할 수 있습니다.