Cavitation(공동현상)

공동 현상은 유체 흐름의 압력이 매우 낮거나 온도 상승으로 인해 유체 내에서 증기 및 / 또는 가스 버블이 빠르게 진화하여 포화 압력을 높입니다. 기포의 갑작스런 출현 (및 후속 붕괴)은 비압축성 유체 내에서 압력의 급격한 변화를 일으켜 심각한 기계적 손상을 일으킬 수 있습니다. 캐비테이션에 의해 유발된 힘은 1983 년 글렌 캐년 댐의 유출로에서 발생한 손상으로 볼 수 있듯이 며칠 만에 수 피트의 암석을 침식 할 가능성이 있습니다 (Lee and Hoopes, 1996).

또한, 캐비테이션은 고압 다이 캐스팅에서 발생할 수 있습니다. 다이의 수축 및 곡선을 통한 용융 합금의 빠른 이동은 압력 강하를 빠르게하여 후속 캐비테이션을 유발할 수 있습니다. 생성 된 증기 기포는 최종 주조에서 다공성을 야기하거나, 더 악화되어, 다이를 손상시켜 주조를 오염시키고 다이 수명을 감소시킬 수 있습니다. 이러한 이유로, 캐비테이션이 발생할 가능성이 있는 영역을 이해하는 것이 중요합니다. 물리적 실험을 통해 캐비테이션을 시작하고 시각화하는 것은 어렵고, 잠재적으로 피해를 주기 때문에 공정을 시뮬레이션하는 것이 바람직합니다.

실증 사례

  • 물 및 환경 구조 내에서 손상된 캐비테이션 시뮬레이션
  • 고압 다이캐스팅 중 캐비테이션을 시뮬레이션하여 다이 손상 및 캐스팅 다공성을 유발할 수 있습니다.
  • MEMS 장치 내에서 열 기포 형성 시뮬레이션
  • 열전달 표면의 비등 거동 예측
  • 캐비테이션 역학으로 인한 혼합 예측

Cavitation(공동현상) FLOW-3D모델링

FLOW-3D의 현재 캐비테이션 모델은 열 버블 제트(Thermal bubble jets) 및 MEMS 장치를 시뮬레이션하는 데 성공적으로 사용되었습니다. FLOW-3D는 “Active”또는 “Passive”모델 옵션을 제공합니다. 능동형(Active) 모델은 기포 영역을 열고 수동형 모델은 흐름을 통해 캐비테이션 기포의 존재를 추적하고 전진하지만 기포 영역의 형성은 시작하지 않습니다.

능동형(Active) 모델은 더 큰 캐비테이션 영역이 예상되고 유동장에 영향을 미치는 경우에 가장 적합한 반면, 수동형(Passive) 모델은 작은 기포의 짧은 모양이 예상되는 시뮬레이션에 가장 적합합니다. 에너지 전송의 능동 모델과 계산을 통해 위상 변화(Phase change)도 옵션입니다. 기포는 계면(Surface)에서의 증발 또는 응축으로 인해 추가로 팽창 또는 수축 될 수 있습니다.

해석 사례

아래의 결과는 8m/s의 진입 속도, 18°의 수렴 기울기 및 8°의 발산 기울기를 가진 벤투리(Venturi) 내의 캐비테이션을 보여줍니다. 캐비테이션의 과도 거동이 잘 모델링되었으며, 모델은 22ms의 실험 결과와 비교하여 17.4ms의 캐비테이션 사이클 주기(Cycle period)를 예측합니다 (Stutz and Reboud 1997).

물 탱크를 통과하는 고속 발사체를 시뮬레이트하여 발사체의 웨이크에서 발생하는 저압 영역에서 공동화 깃털(Cavitation jets)을 보여줍니다. 발사체의 초기 속도는 600m/s입니다. 아래는 탱크에서의 움직임과 후미 캐비테이션 유체의 해석 결과입니다. 캐비테이팅 플룸(Cavitating plume)의 반경은 발사체가 감속함에 따라 좁아집니다.

참고 문헌

  • Lee, W., Hoopes, J.A., 1996, Prediction of Cavitation Damage for Spillways, Journal of Hydraulic Engineering, 122(9): 481-488.
  • Plesset, M.S., Prosperetti, A., 1977, Bubble Dynamics and Cavitation, Annual Revue of Fluid Mech, 9: 145-185.
  • Rouse, H., 1946. Elementary Mechanics of Fluids, New York: Dover Publications, Inc.
  • Stutz, B., Reboud, J.L., 1997, Experiments on unsteady cavitation, Experiments in Fluids, 22: 191-198.