본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 이용하실 때 참고하시기 바랍니다.

Reynolds Number

레이놀즈 수

주어진 수치 방법에 의해 정확하게 계산 될 수 있는 유동에 대해서 가장 높고, 가장 낮은 레이놀즈 수 무엇입니까? 이 질문은 다양한 답과 그리고 가장 기술적인 문제들로서 주어진 답을 포함하는 가정들로부터 다양한 답을 가지고 있습니다.

본 목적을 위해, 레이놀즈 수는 R = R LU / ν로 정의되며, 여기서 L과 U는 유동 특성 길이 및 스케일이고, ν는 유체의 동점도(kinematic viscosity )입니다. 즉 물체의 관성이 점성에 비해서 얼마나 큰가를 나타내는 척도로 이 레이놀즈 수가 작을수록 층류(유체의 유선이 유지되면서 흐르는 유동)가, 클수록 난류가 형성된다. 무 차원 레이놀즈 수가 점성의 관성 효과의 측정을 중요성을 상기시킵니다. 높은 레이놀즈 수에서의 흐름은 정성적으로 다른 행동을 나타내고, 난류 될 수 있습니다.

일반적으로 고려해야 할 가장 중요한 한계는 높은 레이놀즈 수입니다. 이것은 층류가 난류로의 분해 또는 경계층이 표면에서 분리되는 위치에 따라 달라지는 몸체의 양력 및 항력을 예측하는 데 계산이 사용될 수 있는 한계입니다. 유동에 대한 점성 응력의 상대적 효과를 정확하게 시뮬레이션 하는 것이 중요한 이러한 또는 다른 유형의 유동 프로세스에서는 계산에서 어떤 수준의 정확도를 기대할 수 있는지에 대한 아이디어를 갖는 것이 유용합니다.

일반적으로 고려해야 할 가장 중요한 한계는 높은 레이놀즈 수입니다. 이것은 층류에서 난류로 붕괴되는 것을 예측하곤 하는 계산의 한계치이며, 유동의 경계층이 그 표면에서부터 박리되는 곳에서의 물체의 양력과 항력을 예측하는 한계치이기도 합니다. 유동의 다양한 유형에서 유동의 점성 응력의 상대적 효과를 정확하게 시뮬레이션하는 것은 중요하며, 계산상 예측되는 정확도의 수준에 대한 어떤 아이디어를 확보하는 것 또한 매우 유용할 것입니다.

높은 레이놀즈 수 제한 – 물리적 인수

흐름을 정확하게 표현하는데 필요한 계산 요구 사항 (즉, 해상도)을 추정하기 위해 간단한 물리적 인수를 사용할 수 있습니다. 이 주장은 흐름 영역이 작은 요소로 세분화 될 때 요소 내의 모든 흐름량이 천천히 변한다는 가정을 기반으로 합니다. 이 가정은 각 요소의 평균 수량 값이 요소 내의 실제 값에 대한 좋은 근사치라는 의미를 전달합니다.

요소 내에서 느리게 변하는 속도를 가지려면 요소 크기의 척도에서 흐름의 레이놀즈 수가 작아야 합니다 (예 : 1 차 Rd = dx · du / ν ≤ 1.0). 이 표현에서 dx와 du는 요소의 길이와 속도 스케일입니다. 이 물리적 요구 사항, 요소의 흐름의 부드러움 (즉, 낮은 레이놀즈 수, 이 척도의 층류 흐름)은 정확한 수치 분해능에 필요한 요소의 크기를 정의하는데 사용될 수 있습니다.

위의 부등식은 L = Ndx 및 U = Ndu 관계에 의해 거시적 레이놀즈 수로 변환 될 수 있으며, 이는 R ≤ N 2로 이어집니다 . 즉, 개별 요소의 규모에 대한 부드러운 흐름의 물리적 정확도 요구 사항은 정확도로 계산할 수 있는 최대 레이놀즈 넘버원이 NN 2 정도라는 것을 의미합니다. 여기서 N은 특성을 해결하는 데 사용되는 요소의 수입니다. 길이 L.

대표적인 응용에서 N은 종종10 내지 20의 범위에 있는 수로서 매우 큰 수 아닙니다. 그리고 이는 단지 약400 의 정확한 계산을 위해 최대 레이놀즈 수로 변환합니다. 이 결과에 대해 해석을 달기 전에 정확한 레이놀즈 수 계산을 위한 추정을 위해서 다른 접근 방법을 시도하는 유익합니다.

High Reynolds Number Limit – A Numerical Argument

수치 근사에 의해서 계산 도입된 viscous-like smoothing의 양은 truncation error로부터 평가 될 수 있습니다. 알다시피 아이디어는 요소 크기 (그리고 적정한 시간 간격 크기) 멱함수을 미분 근사하는 테일러 급수 전개를 하는 것입니다. 물론, 일관성 있는 근사는 원래 근사환 된 편미분 방정식의 가장 낮은 차수를 이용하는 것입니다.

다음으로 높은 차수는 보통 확산 (즉, 2차 차수 공간 미분형태) 항입니다. 점성 계수와 더불어 이러한 항의 계수 비교는 점성 효과를 더 정확하게 계산 할 수 없을 때의 추정치를 제공합니다.

1차 수치 근사 (예를 들어 대류에 대한donor cell 또는upwind technique )에 대해서 정확도를 위해서 1보다 적어야만 하는 항들의 비는 다음의 판별식을 유도하게 됩니다( R ≤ 2N.) 그리고 2차 수치 근사의 결과, R ≤ N얻어지고 물리적인 인자(Physical Argument)로부터 같은 결과가 얻어 집니다.

이러한 관계의 우변을 곱하는 작은 숫자 요소가 사용되며, 이는 사용 된 특정 수치 근사에 따라 달라 지지만 N에 대한 기본 종속성은 변경되지 않습니다. 모든 2 차 방법이 1 차 방법보다 분명히 훨씬 낫지 만 결과는 고무적이지 않습니다. 정확하게 계산할 수 있는 최대 레이놀즈 수는 N을 늘리지 않는 한 매우 제한적인 것으로 보입니다. 이는 매우 큰 그리드를 처리한다는 의미입니다.

하이 레이놀즈 수에 대한 일반적인 의견

이러한 평가들은 첫 발생 시에는 실망스런 부분도 있으나 종종 완화되는 상황으로 전개됩니다. 무엇보다도 중용한 것은 대부분의 문제들은 점성 응력에 대한 정확한 처리를 요구하지 않습니다. 이러한 문제에 대해서 높은 레이놀즈 수의 상한은 점성 효과가 중요하지 않다는 것을 의도한 의미를 갖습니다.

어떤 유동이 난류에 의해 운동량 혼합이 이루워진 fully turbulent 되기 위해 충분히 높은 레이놀즈 수를 가질 때, 종종 잘 분류될 수 있는 scale을 가진 영역 내에서 100 미만의 유효한 레이놀즈 수의 평균 유동으로 진행되곤 합니다. 물론, 이것은 난류를 기술할 수 있는 적당한 난류 모델이 사용되고 있다는 것을 가정합니다.

마지막으로 점성 효과의 정확한 정보에 따라 일부 유동 특성을 가질 필요가 있을 때 인위적인 의미의 효과를 유도하는 것이 가능 할 수 있습니다. 예를 들어, 풍동 trip wire는 종종 레이놀즈 수 상사성( similarity )의 부족을 고려하여 trigger 유동의 박리에 사용되곤 합니다. 비슷한 처리가 풍동의 수치 시뮬레이션에 추가 될 수 있습니다.

결론은 CFD 방법을 사용하여 높은 레이놀즈 수 흐름을 계산하는 데 사용할 수 있지만 수치해석상의 전산 오차가 물리적인 효과를 압도 할 수 있는 상황에 대한 경고는 해당 난류 모델에 달려있다고 말할 수 있습니다.

낮은 레이놀즈 수 제한

낮은 레이놀즈 수에서 한계는 정밀도의 한계가 아니라 계산을 완료하는데 필요한 계산 시간을 기준으로 한계입니다.  점성 응력 항에 explicit 수치 근사를 사용하면 숫자의 안정성을 유지하기 위해 시간 단계의 크기에 한계가 있습니다.  이 한계는 본질적으로 점성으로 인한 운동량의 변화는 하나의 시간 단계에서 대략 1 개의 요소를 넘어 전파하는 것은 아니라는 것을 보여줍니다.  단순한 2 차원의 경우에는 이 한계는 νdt ≤ dx2/4입니다.

이것은 T = Mdt 및 TU = L이라는 대응을 작성하여 레이놀즈 수를 포함하는 식으로 변형 할 수 있습니다.  즉, 흐름의 특성 시간은 속도 U의 유체가 거리 L을 이동하는 시간이며, 시간 T를 분해 시간 단계의 수는 M입니다.  이러한 관계식에 의해 안정된 조건은 M = 4N2/R 입니다.

이 결과에서 중요한 것은 M이 R에 반비례하여 증가하는 것입니다.  레이놀즈 수가 매우 작은 흐름의 경우 explicit 수치 법에는 매우 많은 시간 단계가 필요할 수 있으며,이 숫자는 해상도의 상승에 따라 급속히 증가하고 있습니다.  낮은 레이놀즈 수의 한계를 가장 효과적으로 제거하는 방법은 implicit 수치 법을 사용하여 점성 응력을 평가하는 것입니다.


Reynolds Number

What are the highest and lowest Reynolds number flows that can be accurately computed by a given numerical method? This question has a variety of answers, and, as with most technical issues, the variety of answers arises from the assumptions involved in giving the answer.

For present purposes, the Reynolds number R is defined as R=LU/ν, where L and U are characteristic length and velocity scales for a flow, and ν is the kinematic viscosity of the fluid. It will be recalled that the non dimensional Reynolds number is a measure of the importance of inertia to viscosity effects. At high Reynolds numbers a flow may become turbulent, exhibiting qualitatively different behavior.

Generally, the most important limit to consider is that of high Reynolds numbers. This is the limit where computations might be used to predict the breakdown of a laminar flow into turbulence, or the lift and drag of a body that is dependent on where boundary layers separate from its surface. In these or other types of flow processes in which it is critical to correctly simulate the relative effect of viscous stresses on the flow, it is useful to have some idea of what level of accuracy can be expected in a computation.

The reason that a Reynolds number limitation exists in computational fluid dynamics CFD) is that the computational stability of most CFD methods relies on some type of numerical smoothing or homogenizing within the computational elements. Since viscosity is a physical mechanism for smoothing flow variations, there can be a problem differentiating between numerical and physical smoothing. This is especially important when critical Reynolds number situations are encountered, because they require an especially accurate estimate of viscous stresses.

High Reynolds Number Limit – A Physical Argument

A simple physical argument can be used to estimate the computational requirements (i.e., resolution) needed to achieve an accurate representation of a flow. The argument is based on the assumption that when a flow region is subdivided into small elements all flow quantities within an element are slowly varying. This assumption carries the implication that the average values of quantities in each element are good approximations for the actual values within the element.

To have a slowly varying velocity within an element, the Reynolds number of the flow on scales of the element size must be small, say of order one, Rd=dx·du/ν ≤ 1.0. In this expression dx and du are length and velocity scales characteristic of the element. This physical requirement, the smoothness of the flow in elements (i.e., a low Reynolds number, laminar flow on this scale), may be used to define the size of elements needed for an accurate numerical resolution.

The above inequality can be converted to a macroscopic Reynolds number by the relations, L=Ndx and U=Ndu, which leads to R ≤ N2. In other words, the physical accuracy requirement of a smooth flow on the scale of individual elements implies that the maximum Reynolds number one can expect to compute with accuracy is on the order of NN2 where N is the number of elements used to resolve a characteristic length L.

In typical applications, N is often in the range of 10 to 20, which translates to a maximum Reynolds number for accurate computations of only about 400, not a very large number! Before commenting on this result it is instructive to try a different approach for estimating the limit for accurate Reynolds number computations.

High Reynolds Number Limit – A Numerical Argument

The amount of viscous-like smoothing introduced into a computation by numerical approximations can be estimated from truncation errors. The idea is to do a Taylor Series expansion on the difference approximations in powers of the element size (and time-step size if that is appropriate). Of course, a consistent approximation should have as its lowest order terms the partial differential equation that was originally being approximated.

At the next higher order there are usually terms that have the character of a diffusion (i.e., second-order space derivatives). A comparison of the coefficients of these terms with the coefficient of viscosity gives an estimate of when viscous effects would no longer be computed accurately.

For a first-order numerical approximation (e.g., a donor cell or upwind technique for advection) the ratio of terms, which must be less than one for accuracy, leads to the criteria R ≤ 2N. With a second-order approximation the result is R ≤ N2, the same result obtained from the “Physical Argument.”

There are small numerical factors multiplying the right-hand sides of these relations, which depend on the specific numerical approximations used, but the basic dependencies on N remain unchanged. Any second-order method is clearly much better than a first-order method, but the results are not encouraging. The maximum Reynolds number that can be computed accurately appears to be quite limited, unless one is willing to increase N, which means dealing with extremely large grids.

General Comments on High Reynolds Numbers

These estimates are discouraging when first encountered, but there are frequently mitigating circumstances. Foremost is the realization that most problems do not require an accurate treatment of viscous stresses. For these problems the high Reynolds number limit has the intended meaning that viscous effects are not important.

When flows have a high enough Reynolds number to be fully turbulent the momentum mixing induced by the turbulence often leads to a mean flow with an effective Reynolds number that is less than 100, well within the range of resolvable scales. Of course, this assumes that a suitable turbulence model is available to describe the turbulence.

Finally, when it is necessary to have some flow property that depends on an accurate knowledge of viscous effects, it may be possible to induce that effect by artificial means. For example, in wind tunnels trip wires are sometimes used to trigger flow separations to account for a lack of Reynolds number similarity. A similar treatment can be added to a numerical simulation of a wind tunnel.

The bottom line is, CFD methods can be used to compute high Reynolds number flows, but it is up to the modeler to be alert for situations where numerical errors could overshadow physical effects.

Low Reynolds Number Limit

At low Reynolds numbers the limit is not one of accuracy but a limit based on the computational time necessary to complete a computation. When explicit numerical approximations are used for viscous stress terms there is a limit on the size of the time step to maintain numerical stability. That limit is essentially a statement that momentum changes caused by viscosity do not propagate more than about one element in one time step. In a simple two-dimensional case this limit is νdt ≤ dx2/4.

This can be transformed into an expression involving the Reynolds number by making the correspondences: T=Mdt and TU=L. That is, the characteristic time for a flow is the time for fluid at velocity U to move a distance L, and the number of time steps resolving time T is M. With these relations the stability condition is then, M = 4N2/R.

The importance of this result is that M increases inversely with R. For very low Reynolds number flows, explicit numerical methods may require a very large number of time steps, and this number increases rapidly with an increase in resolution. The low Reynolds number limit is best eliminated by employing an implicit numerical method for evaluating viscous stresses.